非GEO卫星群分析Toolkit4.2
年间契约型资讯服务
商品编码
1516499

非GEO卫星群分析Toolkit4.2

Non-GEO Constellations Analysis Toolkit 4.2

出版日期: 年间契约型资讯服务 | 出版商: Analysys Mason | 英文

价格
简介目录

非GEO卫星群分析工具包第4版(NCAT4)是用于对LEO(低地球轨道)和MEO(中地球轨道)卫星群进行事实评估的分析模型,它结合了硬资料。

NCAT 是用于评估卫星群的易于使用的定量模型的集合。

NCAT 重点关注 LEO/MEO 卫星群的性能,并提供有关频宽供需趋势、市场回应能力和业务案例的详细资讯。也比较了星座与地面网路的竞争格局。

策略师以及业务和技术专家还可以利用 NCAT4 的可配置使用者控制来评估 NGSO 星座的影响。

新发布的 "NCAT v4.2" 提供了更丰富的见解和资料视觉化功能,并可作为线上网路应用程式使用。

更改与新功能

NCAT4 动态处理数百万个资料点,以公正地计算星座性能指标和功能。所有工具都可以透过筛选器、视觉化控制项和使用者输入进行设定。

本报告的主要特点:

  • 综合资料库:增强的更新周期使用户能够轻鬆运行新的模拟。
    • 每日更新:在轨卫星数量(Starlink、SES O3B、OneWeb 等)和轨道观测结果每天自动更新。
    • 季更新:核心软体和资料库增强功能每季进行一次。
  • 正确编码的演算法:推动基于事实的分析和视觉化。
  • 点击式互动:互动式地图和控制项(图层、筛选器、按钮、设定)可让使用者放大和缩小萤幕并点击以设定终端位置和控制项动态计算和视觉化。
  • 多轨道、多频段分析:可以使用一个或多个系统的外壳组合来设定模拟,并可以同时对数千颗卫星进行计算。
  • 动态动画视觉化:传播条件的即时视觉化,例如卫星位置和足迹、可见卫星、天线视角、链路延迟变化以及供需热图。
  • 时间/空间控制:NCAT4 允许在全球范围内、依地区(使用者定义)和本地(200 多个国家/地区)进行即时分析和高速延迟分析。
    • 模拟最高可加速 300 倍,工具包使用者可以在不到 5 分钟的时间内运行一天的星座性能。
  • 六角形地面网格:NCAT4 引进了动态六边形网格,可将国家级精度缩小到城市规模(小区半径约为9 公里,比之前版本提高40倍)。
  • 增强型 IP 吞吐量计算:系统同时计算闸道和用户终端视角任意组合的所有用户/闸道波束的链路预算吞吐量分析。
  • 需求驱动的供应:透过可选择的供应公平标准,NCAT4 可以模拟最适合不断变化的需求条件的可变梁容量重新配置。
  • 升级的移动工具:该工具包连结到每日更新的商业飞行相关资讯来源*,并包括有关 IFC 的资讯(用于评估飞行中的需求/供应趋势)连接性。
  • 可下载资料集:模拟产生的大量输出资料可以下载到表格 CSV 檔案中,以便在 NCAT 平台之外进行进一步处理:
    • 图表资料、蒙地卡罗样本、基准指标/分数、带有时间戳记的星座外壳、地面网格、供需热图、评估摘要、飞行路线、视角统计、光束利用率等。

本报告中回答的问题

  • 如何在多个层面(包括覆盖范围/容量、波束和卫星)对目前和未来的 NGSO 架构进行基准测试?
  • 每个闸道/用户波束、卫星和子星座的前向/反向连结容量(频率、频宽、IP 吞吐量)是多少?
  • 如何估算可用资本成本(每 Mbps)?商业案例对卫星製造和发射成本的每个要素的反应程度如何?
  • 在什么条件下,在尚未提供连线服务的地区,卫星通讯星座将比光纤更具竞争力?回程业务案例对资本支出和营运支出有多敏感?
  • 如何根据可调整的行动/固定宽频服务计画实际评估频宽的需求和供应?拥挤的区域在哪里? 它们会随着时间的推移而如何变化?
  • 在所有纬度以及每种外壳/外壳组合的 "视线内" 或视距(LoS)卫星的最大、平均和最小数量是多少?
  • 光纤延迟与 LEO 系统和拓扑相比如何?对POP、OISL(光学星间连结)、连结中继等的使用是否会产生影响?
  • NGSO 系统避免干扰 GEO(GSO)系统的监管豁免角度是什么?

结论:客户依靠这个功能丰富的工具箱来支持他们对 LEO 和 MEO 卫星群的分析。

市场参与者的评论

"很棒的工具集!灵活、直观、易于使用,并且可以进行深入分析。" - Grupo Andesat 执行长 Pablo Rasore。

简介目录

The "Non-GEO Constellations Analysis Toolkit" version 4 (NCAT4) combines hard data with analytics models and interactive visualisation tools for factual assessments of LEO and MEO satellite constellations.

The NCAT is an assembly of easy-to-use quantitative models to assess satellite constellations.

The NCAT focuses on the performance of LEO and MEO satellite constellations and includes detailed information about bandwidth supply and demand dynamics, market addressability and business cases. It also compares the competitive standing of the constellations with that of terrestrial networks.

It enables strategists, business and technical professionals to assess the impact of NGSO constellations via configurable user controls.

The newly released "NCAT v4.2" provides enhanced insights and data visualisation capabilities, and is delivered as an online web app.

Changes and new additions

NCAT4 processes millions of data points dynamically to drive unbiased calculations of constellations' performance metrics and capabilities. All tools are configurable though filters, visualisation controls and user inputs.

Features include:

  • Comprehensive database: with enhanced update cycles for users to run fresh simulations effortlessly.
    • Daily updates: the number of in-orbit satellites (Starlink, SES O3B, OneWeb, etc.) and their orbital observations are updated daily and automatically.
    • Quarterly updates: enhancements to the core software and database deployed quarterly.
  • Rigorously coded algorithms: driving factual analytics and visualizations.
  • Point-and-click interactivity: through interactive maps and controls (layers, filters, buttons and settings) users zoom in/out, click to set user-terminal locations and control dynamic calculations and visualizations.
  • Multi-orbit, multi-band analysis: simulations are configurable for a combination of shells from one or multiple systems, driving calculations concurrently for thousands of satellites.
  • Dynamic, animated visualisations: users visualise propagating conditions in real time including satellites position, footprint, visible satellites, antenna look angles, link latency variations, supply and demand heatmaps, etc.
  • Space-time controls: NCAT4 allows real-time and accelerated time-lapse analysis globally, regionally (user-defined) or locally for over 200 countries and territories.
    • Simulations can be accelerated up to 300 times, allowing toolkit users to run an entire day of constellation performance in less than 5 minutes.
  • Hexagonal ground grid: NCAT4 introduced a dynamic hex-grid with country-level precision configurable down to city-size resolution (~9 km cell radius, a 40X improvement in precision over previous versions).
  • Boosted IP throughput computations: The system computes link-budget throughput analysis concurrently on all user and gateway beams for combinations of gateway and user-terminal look angles.
  • Demand-driven supply: via selectable supply fairness criteria, NCAT4 simulates reconfigurations of steerable beam capacity to best meet changing demand conditions.
  • Upgraded mobility tool: the toolkit is linked to daily information sources* of commercial flights for the assessment of in-flight connectivity (IFC) supply/demand dynamics (tens of thousands of flight routes, airlines and airports).
  • Downloadable datasets: simulations produce vast amounts of output data, downloadable in tabular CSV format for further processing outside the NCAT platform:
    • Charts data, Monte Carlo samples, benchmark metrics /scores, timestamped constellation shells, terrestrial grids, supply & demand heatmaps, assessment summaries, flight routes, look angle stats, beam utilization, etc.

Questions answered:

  • How do current and future NGSO architectures benchmark at multiple layers including coverage, capacity, beams and satellites?
  • What is the forward and return link capacity (spectrum, bandwidth and IP throughput) per gateway/user beam, satellite and sub-constellation?
  • How can the capital cost per usable Mbps be inferred? What is the business-case sensitivity to satellite manufacture and launch cost elements?
  • Under what conditions can satcom constellations become more competitive than fiber optics to target underserved communities? How sensitive is the backhaul business case to capex and opex?
  • How to assess bandwidth supply and demand factually, based on configurable mobility and fixed broadband service plans? Where are the congestion areas and how do they shift over time?
  • What is the maximum, average and minimum number of satellites "in view" or line of sight (LoS) across all latitudes, per shell and combination of shells?
  • How does fiber latency benchmark against LEO systems and topologies, depending on POPs, use of optical inter-satellite links (OISL) and link relays?
  • What are the regulatory exclusion angles for NGSO systems to avoid interfering with GEO (GSO) systems?

Bottom line: Clients rely on a feature-rich toolbox to drive analysis of LEO and MEO satellite constellations.

Market commentary:

"The go-to compendium and toolkit for NGSO constellations." - Konrad Nieradka, System and Service Architecht, Rivada Space Networks.

"Very impressive piece of work, and incredibly useful." - Nihar Shah, Vice President, Strategy and Market Intelligence SES.

"Excellent toolset! Flexible, visual, easy-to-use and with in-depth analysis." - Pablo Rasore, CEO, Grupo Andesat.