封面
市场调查报告书
商品编码
1718880

地理空间人工智慧市场:全球 2021-2030 年

Global Geospatial Artificial Intelligence Market Research Report 2021-2030

出版日期: | 出版商: Arizton Advisory & Intelligence | 英文 219 Pages | 订单完成后即时交付

价格
简介目录

预计2024年至2030年全球地理空间人工智慧市场规模将以9.25%的复合年增长率成长。

地理空间人工智慧市场趋势与推动因素

政府对智慧城市和国家安全项目的投资

世界各国政府正在增加对智慧城市计画和国家安全计画的投资,利用地理空间人工智慧 (GeoAI) 的力量来增强基础设施、公共服务和安全系统。GeoAI 结合卫星影像、人工智慧地图和即时空间资料分析,为城市规划和国土安全提供可行的见解。在智慧城市发展中,地理空间人工智慧市场在创造高效、永续和互联互通的城市环境中发挥着至关重要的作用。例如,在澳洲雪梨,地方议会正在采用人工智慧技术来检测和解决道路缺陷(如坑洞),以免造成损害。垃圾车配备了装有人工智慧软体的智慧型手机,用于扫瞄和记录道路缺陷,三个月内解决了 10,000 多个问题。这种积极主动的方法不仅提高了道路安全性,而且还优化了维护资源。

2024年,波兰启动了一项名为 "东盾" 的重大安全计画。其重点是在白俄罗斯和加里宁格勒(俄罗斯的一部分)边境建立强大的防御。这包括配备先进摄影机和人工智慧来侦测威胁的监控系统。政府计划在未来四年内投入超过 100 亿波兰兹罗提(超过 25 亿美元)。此外,到2024年底,印度将完成91%的智慧城市任务项目。印度政府已花费约 147 亿卢比(超过 170 亿美元)采用即时监控、智慧交通灯和废弃物管理系统等技术,使印度城市更有效率和现代化。

新加坡于2023年底更新了国家人工智慧战略,宣布到2024年将推出100多种新的人工智慧工具。其中包括社区中心的虚拟助理和聊天机器人。目的是利用智慧科技改善教育和公共服务。这些现实世界的计画展示了 GeoAI 如何成为不同国家的强大工具。无论是修復道路、改善交通、城市规划或保卫边境,人工智慧和地图工具的智慧使用都在帮助城市更好地运作、使社区更安全,从而支持地理空间人工智慧市场的成长。

人工智慧遥感技术在环境监测的应用成长

随着世界面临气候变迁、污染和森林砍伐等日益严峻的课题,各国纷纷转向 GeoAI 等先进技术,将智慧人工智慧与卫星和无人机测绘相结合,密切监测环境。这项智慧技术使政府、研究人员和企业能够即时瞭解自然界正在发生的事情,从而能够更快、更聪明地采取行动。在北美,美国NASA与 Planet Labs 和 Google Earth Engine 合作,利用人工智慧追踪碳和甲烷等有害气体,以协助制定更好的气候政策。在欧洲,欧洲太空总署在其哥白尼卫星上使用人工智慧来监测森林变化和非法砍伐,特别是在亚马逊地区和整个欧洲。在亚太地区,印度国家太空委员会(NRSC)正在利用人工智慧预测干旱和水资源短缺,帮助地方政府提前规划用水。在拉丁美洲,巴西等国家正在使用卫星图像和人工智慧来检测亚马逊地区的非法森林砍伐行为,以便更快地发出警报并做出反应。在非洲,肯亚和衣索比亚等国家在联合国的支持下,正在使用无人机和人工智慧监测沙漠生长和农作物。微软的 "地球人工智慧" 计画正在为 100 多个追踪野生动物、污染和自然健康状况的环境计画提供支援。

整体而言,地理空间人工智慧市场正成为保护地球的有力工具,帮助政府和企业快速、明智地采取行动,使世界成为一个更安全、更绿色的未来。目前,世界各国和企业都在利用搭载人工智慧的智慧卫星和无人机技术来监测地球。从早期森林火灾侦测到干旱预测再到污染追踪,GeoAI 正在帮助我们以更聪明、更快捷的方式保护自然和应对气候变迁。

地理人工智慧分割

依部署类型洞察

基于云端的部署已成为全球地理空间人工智慧市场的主导模式,为处理海量地理空间资料集提供了无与伦比的可扩展性、灵活性和可存取性。这些平台帮助企业更轻鬆地管理和分析大型位置资料集。企业现在可以转向云端来获取所需的储存和速度,而不必购买和运行自己的强大电脑。一个很好的例子是Intel Geospatial,它与Amazon Web Services (AWS) 合作建构了一个基于云端的系统。该系统使用人工智慧检查来自卫星、无人机和地面感测器的数据。它可以帮助石油、天然气和公用事业等行业的公司更快发现受损设备和环境问题。这节省了时间并使操作更安全。

另一个例子是Microsoft和Esri的合作。他们在Microsoft云端平台 Azure 上建置了一个名为 GeoAI Data Science VM 的虚拟机器。它将 Esri 的地图软体(ArcGIS Pro)与Microsoft的 AI 工具结合在一起。使用者可以在云端快速地、团队合作地执行各种任务,例如从卫星影像中识别土地类型或创建复杂的地图。基于云端的 GeoAI 工具正变得不可或缺。基于云端的 GeoAI 工具提供强大的运算能力、易于存取和低成本,帮助许多行业的公司更有效率地工作并开发更好的解决方案。

以数据模型洞察

全球地理空间人工智慧市场以向量资料模型为主,主要是因为它们能够准确、清晰地表示现实世界的特征。向量资料对于需要详细空间分析的应用程式特别有用,因为它使用点、线和多边形来描绘各种地理特征。例如,Pokemon Go 背后的公司 Niantic 使用向量资料创建了复杂的地球地理空间模型。透过收集数百万玩家的位置信息,Niantic 能够开发全面的 3D 地图来改善您的游戏体验并提供支援一系列基于位置的服务的工具。这种准确建模和分析空间关係的能力巩固了向量资料在地理空间人工智慧市场的主导地位,使得在城市规划、导航和环境管理等领域做出更明智的决策成为可能。

组件洞察

全球地理空间人工智慧市场根据组件分为软体、硬体和服务。在地理空间人工智慧 (GeoAI) 市场中,软体元件已成为主导部分,这受到各个垂直行业对高级地理空间分析日益增长的需求的推动。这些软体解决方案使企业能够有效地处理和解释复杂的空间数据,促进地图绘製、预测分析、即时数据视觉化等。

例如,Esri 的 ArcGIS 平台整合了 AI 功能,提供全面的地理空间分析工具,协助在城市规划和环境管理等领域做出明智的决策。同样,Google的Earth Engine使用人工智慧分析大型地理空间资料集,以支援农业、林业和灾害应变等应用。这些平台说明了人工智慧地理空间软体对于将数据转化为可操作的见解至关重要。

人工智慧、机器学习和大数据分析与地理空间软体的日益整合将进一步增强其功能,使企业能够从复杂的资料集中提取有价值的资讯。这一趋势凸显了软体在推动各领域地理空间人工智慧市场的功能和应用方面发挥的关键作用。

技术洞察

在地理空间人工智慧市场中,机器学习(ML)已成为主导技术,彻底改变了地理空间资料的分析和利用方式。基于机器学习的演算法可以增强模式识别、自动化空间分析并改进预测模型,使其成为城市规划、农业、灾害管理和国防等产业的重要工具。

例如,美国NASA使用机器学习模型来分析卫星影像并预测天气模式,以便更好地做好灾难准备。在农业领域,John Deere等公司正在采用机器学习驱动的地理空间人工智慧来优化作物健康监测和产量预测。同样,Google AI正在将机器学习融入Google Earth Engine,以帮助环境研究人员高精度地追踪森林砍伐和城市扩张。ML 快速且准确地处理大量地理空间资料集的能力对于即时洪水预报、野火蔓延预测和自动土地利用分类等应用至关重要。随着企业不断采用机器学习驱动的 GeoAI 解决方案,该技术在转变地理空间分析方面的作用可能会变得更加强大。

最终用户洞察

全球地理空间人工智慧市场分为企业和个人终端用户。由于人工智慧驱动的地理空间分析在决策、营运效率和策略规划方面的广泛应用,企业部门在市场中占据主导地位。零售、物流、房地产、农业和金融等行业的企业正在使用 GeoAI 来获取宝贵的基于位置的洞察并提高生产力。

例如,Amazon和Walmart正在使用 GeoAI 来优化其供应链,以便更好地追踪货运、预测需求和定位仓库。在房地产领域,Zillow 等公司会分析地理空间资料来确定房产价值、市场趋势以及洪水和城市扩张等风险因素。同样,金融机构正在整合 GeoAI 进行风险评估,使用卫星影像和人工智慧驱动的分析来监测影响经济活动、基础设施项目和投资的气候风险。

企业正在从地理空间人工智慧市场中受益,即时处理大量资料集,以改善从市场扩张策略到环境合规的一切。随着企业优先考虑数据驱动的决策,企业对 GeoAI 解决方案的需求预计将持续成长,进一步巩固其市场主导地位。

公司洞察

由于城市规划、国防、环境监测、灾害管理等领域扩大采用人工智慧地理空间分析,政府和公共部门是企业地理空间人工智慧市场的主导部分。世界各国政府都在利用 GeoAI 来改善决策、优化公共服务和加强国家安全。

例如,美国地质调查局 (USGS) 使用 GeoAI 监测土地利用变化、追踪森林砍伐和评估气候风险。同样,欧洲太空总署 (ESA) 正在使用人工智慧整合卫星资料进行灾害响应,即时绘製洪水易发地区和野火风险图。在国防部门,国防部和北约NATO正在使用 GeoAI 进行监视、边境安全和威胁侦测,使用人工智慧增强的卫星影像和无人机资料来监测地缘政治发展。

在智慧城市计画中,沙乌地阿拉伯的 NEOM 计画和印度的智慧城市使命等政府正在整合 GeoAI 以进行交通管理、基础设施规划和能源效率。公共机构也在使用 GeoAI 进行农业监测,例如巴西国家太空研究所 (INPE) 使用支援人工智慧的卫星资料来追踪亚马逊地区的非法森林砍伐。随着各国政府优先考虑气候适应力、基础设施现代化和国家安全,公共部门对地理空间人工智慧市场的需求持续增长,巩固了其在市场上的主导地位。

人工智慧市场区域分析(按地区)

2024年,北美在全球地理空间人工智慧市场占据主导地位,占超过31%的市场。在北美,美国和加拿大在 GeoAI 应用方面处于领先地位,这主要归功于其在国防、智慧城市和灾害管理方面的大力投资。美国国防部使用人工智慧卫星影像来保障边境安全和军事情报,而联邦紧急事务管理局 (FEMA) 等机构则使用 GeoAI 来预测和管理飓风和野火等自然灾害。在加拿大, "智慧城市课题赛" 鼓励地方政府整合人工智慧地理空间分析,以优化交通、能源管理和城市规划。

在欧洲地理空间人工智慧市场,德国、英国和法国等国家正在利用 GeoAI 进行环境监测和气候调适。欧洲太空总署 (ESA) 正在启动一项人工智慧卫星计划,以追踪森林砍伐、空气污染和水资源管理。英国政府也投资人工智慧地理空间工具,用于铁路优化和洪水测绘,以改善国家基础设施规划。此外,亚太地区的地理空间人工智慧市场正在显着成长,其中以中国、印度和日本为主导。中国的 "一带一路" 倡议 (BRI) 正在使用 GeoAI 分析地形、优化施工现场并改善大型基础设施项目的物流。印度的《2022年国家地理空间政策》鼓励各行各业采用人工智慧驱动的地图解决方案,用于农业、智慧城市发展和灾害应变。日本已将 GeoAI 纳入其地震预测系统,利用人工智慧感测器分析地震活动并提高灾害防范能力。

在中东和非洲地理空间人工智慧市场,沙乌地阿拉伯和阿联酋正在大力投资 GeoAI,以支援其智慧城市计画和国家安全。沙乌地阿拉伯的 NEOM 计画是一座未来智慧城市,使用人工智慧驱动的地理空间分析进行交通管制、能源分配和环境永续性。阿拉伯联合大公国 (UAE) 正在将 GeoAI 纳入其基于无人机的监控系统,用于边境安全和基础设施监控。在非洲,南非和肯亚等国家正在使用 GeoAI 进行农业测绘、野生动物保护和洪水预报,以改善资源管理和灾害应变。

此外,拉丁美洲的地理空间人工智慧市场也在稳步成长,巴西和墨西哥利用 GeoAI 进行森林砍伐追踪、城市扩张分析和气候监测。巴西国家太空研究所 (INPE) 正在利用人工智慧卫星图像打击亚马逊雨林的非法砍伐行为。

随着世界各国政府和企业扩大采用人工智慧地理空间智能,GeoAI 市场将会成长并在加强所有主要地区的城市发展、环境保护和安全方面发挥关键作用。

地理空间人工智慧市场供应商分析

全球地理空间人工智慧市场竞争激烈,许多公司正在开发先进的人工智慧地理空间解决方案,以满足对智慧基础设施、灾害管理、国防和环境监测日益增长的需求。地理空间人工智慧市场包括大型科技公司、卫星影像处理公司、人工智慧新创公司和政府支持的研究机构,它们都在努力创新并扩大其市场影响力。

全球地理空间人工智慧市场的主要参与者包括 Esri、Google、Microsoft、Maxar Technologies、Orbital Insight、Airbus等公司。这些公司正在投资人工智慧卫星影像、地理空间分析平台和即时资料处理技术,以提高地理空间情报的准确性和效率。例如,领先的地理资讯系统 (GIS) 供应商 Esri 正在将人工智慧和机器学习整合到其 ArcGIS 平台中,以帮助企业和政府分析卫星影像、优化交通网路和管理环境风险。Google Earth Engine 是地理空间人工智慧市场中另一个强大的 GeoAI 工具,透过分析大量卫星和遥感资料来实现即时环境监测。

Maxar Technologies 专注于高解析度卫星影像,并使用人工智慧演算法来侦测土地利用变化、追踪森林砍伐和监测基础设施项目。空中巴士公司也正在开发人工智慧地球观测服务,以支援政府和企业的气候监测和防御应用。此外,Orbital Insight 和 SpaceKnow 等新创公司正在利用基于人工智慧的预测分析彻底改变地理空间人工智慧市场。这些公司利用机器学习分析来自卫星和无人机的地理空间数据,为金融、房地产和农业等产业提供见解。例如,Orbital Insight 的人工智慧模型可以根据卫星影像估算农作物产量、监控油轮并追踪城市发展趋势。

政府和国防机构在塑造地理空间人工智慧市场格局方面也发挥关键作用。美国国家航空暨太空总署 (NASA)、欧洲太空总署 (ESA) 和印度太空研究组织 (ISRO) 等组织正在积极投资 GeoAI,用于灾害应变、气候变迁监测和国家安全应用。在美国,国防部 (DoD) 使用人工智慧地理空间分析进行边境安全、军事规划和监视。

为了保持竞争力,GeoAI 市场中的公司越来越注重合作伙伴关係、收购和人工智慧驱动的创新。例如,Microsoft将于 2024 年与 Planet Labs 合作,将 GeoAI 整合到其 Azure 云端服务中,让企业和政府机构更能使用地理空间智慧工具。同样,Amazon Web Services (AWS) 正在透过与卫星数据提供商合作来扩展其 GeoAI 功能,为企业提供即时地理空间分析。此外,随着对人工智慧地理空间智慧的需求不断增长,地理空间人工智慧市场的竞争预计将加剧。投资先进的人工智慧模型、即时分析和基于云端的地理空间服务的公司可能会主导市场、推动创新并塑造地理人工智慧产业的未来。

主要公司

  • Esri
  • Hexagon AB
  • Maxar Technologies
  • Google LLC (Alphabet Inc.)
  • Microsoft Corporation
  • IBM
  • Trimble Inc.
  • Autodesk, Inc.
  • Bentley Systems, Incorporated
  • Amazon Web Services, Inc. (AWS)
  • Airbus
  • Planet Labs PBC
  • Orbital Insight, Inc.
  • Descartes Labs, Inc.

其他值得关注的公司简介

  • Satellogic Inc.
  • Palantir Technologies Inc.
  • Blue Sky Analytics
  • Sparkgeo
  • GeoIQ
  • 1Spatial
  • Agronomeye
  • AiDash
  • Alcis Holdings Ltd.
  • Anditi
  • ASTERRA
  • Atlas AI P.B.C.
  • Mapbox, Inc.
  • TomTom
  • HERE Technologies
  • CARTO
  • L3Harris Technologies, Inc.
  • TerraGo
  • Blue Marble Geographics
  • Northrop Grumman Corporation

本报告研究了全球地理空间人工智慧市场,并概述了市场以及实施类型、资料模型、组件、技术、最终用户、公司和地区的趋势,以及参与市场的公司概况。

目录

第1章 范围和覆盖范围

第2章 重要注意事项

第3章市场动态

  • 机会与趋势
  • 市场驱动力
  • 市场制约因素
  • 介绍
  • 市场状况

第4章 市场区隔

  • 实施形式
  • 资料模型
  • 零件
  • 技术
  • 最终用户

第5章 地理区划

  • 亚太地区
  • 北美
  • 欧洲
  • 拉丁美洲
  • 中东/非洲

第6章竞争格局

  • 竞争情景
  • 市场占有率分析
  • 主要公司简介
  • 其他知名公司简介
简介目录
Product Code: ARZ250409

The global geospatial artificial intelligence market is expected to grow at a CAGR of 9.25% from 2024 to 2030.

GEOSPATIAL AI MARKET TRENDS & DRIVERS

Government Investment in Smart Cities and National Security Projects

Governments worldwide are increasingly investing in smart city projects and national security initiatives, harnessing the power of geospatial artificial intelligence (GeoAI) to enhance infrastructure, public services, and security systems. GeoAI integrates satellite imagery, AI-driven mapping, and real-time spatial data analysis to provide actionable insights for urban planning and homeland security. In smart city development, the geospatial artificial intelligence market plays a pivotal role in creating efficient, sustainable, and interconnected urban environments. For instance, in Sydney, Australia, local councils employ AI technology to detect and address road defects like potholes before they cause damage. By mounting smartphones equipped with AI software on garbage trucks, the system scans and records road imperfections, leading to the rectification of over 10,000 issues within three months. This proactive approach not only enhances road safety but also optimizes maintenance resources.

In 2024, Poland started a huge security project called East Shield. It's focused on building strong defenses along the borders with Belarus and Kaliningrad (a part of Russia). This includes advanced cameras and AI-powered surveillance systems to detect threats. The government plans to spend over 10 billion Polish zloty (more than USD 2.5 billion) over the next four years. Furthermore, by the end of 2024, India had completed 91% of its Smart Cities Mission projects. The government has spent around ₹1.47 lakh crore (over USD 17 billion) to make Indian cities more efficient and modern using technology like real-time monitoring, smart traffic lights, and waste management systems.

Singapore updated its National AI Strategy in late 2023 and by 2024 had launched over 100 new AI tools. These include virtual teaching assistants and helpful chatbots in community centers. The aim is to improve both education and public services using smart technologies. These real-world projects show how GeoAI is becoming a powerful tool across different countries. Whether it's fixing roads, improving transport, planning cities, or protecting borders, the smart use of AI and mapping tools is helping cities run better & making communities safer, and supporting the geospatial artificial intelligence market growth.

Growth of AI-Powered Remote Sensing in Environmental Monitoring

As the world faces growing challenges like climate change, pollution, and deforestation, countries are turning to advanced technologies like GeoAI - a combination of smart artificial intelligence and satellite or drone-based mapping - to keep a close watch on the environment. This smart tech helps governments, researchers, and companies get real-time information about what's happening in nature, so they can act faster and smarter. In North America, NASA in the U.S. partnered with Planet Labs and Google Earth Engine to use AI for tracking harmful gases like carbon and methane, helping create better climate policies. In Europe, the European Space Agency used AI with its Copernicus satellites to monitor forest changes and illegal tree cutting, especially in the Amazon and across Europe. In Asia-Pacific, India's space agency (NRSC) is using AI to predict droughts and water shortages, helping local authorities plan water use in advance. In Latin America, countries like Brazil are using satellite images and AI to detect illegal deforestation in the Amazon, with faster alerts for quicker action. In Africa, places like Kenya and Ethiopia are using drones and AI to monitor desert growth and crops, supported by the United Nations. Even private companies are helping-IBM updated its Environmental Intelligence tools in 2024 to help businesses understand climate risks, and Microsoft's "AI for Earth" project has supported over 100 environmental projects that track wildlife, pollution, and nature health.

Overall, the geospatial artificial intelligence market is becoming a powerful tool to protect the planet by helping governments and companies act quickly and wisely, making our world a safer and greener place for the future. Across the globe, countries and companies are now using smart satellite and drone technology powered by AI to watch over the planet. From spotting forest fires early to predicting droughts and tracking pollution, GeoAI is helping us protect nature and fight climate change in smarter and faster ways.

GEO AI SEGMENTATION INSIGHTS

INSIGHTS BY DEPLOYMENT MODE

Cloud-based deployment has become the dominant model in the global geospatial artificial intelligence market, offering unparalleled scalability, flexibility, and accessibility for processing vast geospatial datasets. These platforms help companies manage and analyze large location-based datasets more easily. Instead of buying and running powerful computers themselves, organizations can now use the cloud to access the storage and speed they need. A good example is Intel Geospatial, which worked with Amazon Web Services (AWS) to create a cloud-based system. This system uses AI to study data from satellites, drones, and ground sensors. It helps companies in areas like oil and gas or utilities find damaged equipment and environmental problems faster. This saves time and makes operations safer.

Another example is the partnership between Microsoft and Esri. They built a virtual machine called GeoAI Data Science VM on Microsoft's cloud platform, Azure. It combines Esri's mapping software (ArcGIS Pro) with Microsoft's AI tools. Users can do many tasks, like studying land types from satellite images or building complex maps, quickly and with better teamwork, all in the cloud. In summary, cloud-based GeoAI tools are becoming essential. They offer strong computing power, easy access, and lower costs, which help companies in many industries work more efficiently and develop better solutions.

Segmentation by Deployment Mode

  • Cloud-based
  • On-premises

INSIGHTS BY DATA MODEL

In the global geospatial artificial intelligence market, vector data models have emerged as a dominant force, primarily due to their ability to represent real-world features with precision and clarity. Vector data utilizes points, lines, and polygons to depict various geographic elements, making it particularly effective for applications requiring detailed spatial analysis. For instance, Niantic, the company behind Pokemon Go, has leveraged vector data to create intricate geospatial models of the Earth. By collecting location data from millions of players, Niantic has developed comprehensive 3D maps that enhance the gaming experience and serve as foundational tools for various location-based services. This capability to accurately model and analyze spatial relationships has solidified vector data's prominence in the geospatial artificial intelligence market, enabling more informed decision-making across sectors such as urban planning, navigation, and environmental management.

Segmentation by Data Model

  • Vector Data
  • Raster Data
  • Others

INSIGHTS BY COMPONENT

The global geospatial artificial intelligence market by component is segmented into software, hardware, and services. In the geospatial artificial intelligence (GeoAI) market, software components have emerged as the dominant segment, driven by the escalating demand for advanced geospatial analytics across various industries. These software solutions enable organizations to efficiently process and interpret complex spatial data, facilitating applications such as mapping, predictive analytics, and real-time data visualization.

For example, Esri's ArcGIS platform integrates AI capabilities to provide comprehensive geospatial analysis tools, aiding sectors like urban planning and environmental management in making informed decisions. Similarly, Google's Earth Engine leverages AI to analyze large-scale geospatial datasets, supporting applications in agriculture, forestry, and disaster response. These platforms exemplify how AI-enhanced geospatial software is pivotal in transforming data into actionable insights.

The increasing integration of AI, machine learning, and big data analytics within geospatial software further amplifies its functionalities, enabling businesses to extract valuable information from intricate datasets. This trend underscores the critical role of software in advancing the capabilities and applications of the geospatial artificial intelligence market across diverse sectors.

Segmentation by Component

  • Software
  • Hardware
  • Services

INSIGHTS BY TECHNOLOGY

In the geospatial artificial intelligence market, Machine Learning (ML) has emerged as the dominant technology, revolutionizing how geospatial data is analyzed and utilized. ML-powered algorithms enhance pattern recognition, automate spatial analysis, and improve predictive modeling, making it a crucial tool across industries like urban planning, agriculture, disaster management, and defense.

For example, NASA uses machine learning models to analyze satellite imagery and predict climate patterns, enabling better disaster preparedness. In agriculture, companies like John Deere employ ML-driven geospatial AI to optimize crop health monitoring and yield prediction. Similarly, Google AI integrates ML in Google Earth Engine, allowing environmental researchers to track deforestation and urban expansion with high precision. The ability of ML to process massive geospatial datasets quickly and accurately makes it essential for applications such as real-time flood forecasting, wildfire spread prediction, and automated land use classification. As organizations continue to adopt ML-driven GeoAI solutions, the technology's role in transforming geospatial analytics will only strengthen in the coming years.

Segmentation by Technology

  • Machine Learning
  • Computer Vision
  • Big Data Analytics
  • Deep Learning (DL)
  • Natural Language Processing (NLP)
  • Others

INSIGHTS BY END USERS

The global geospatial artificial intelligence market by end-users is segmented into enterprise and individual. The enterprise sector dominates the market due to its widespread adoption of AI-driven geospatial analytics for decision-making, operational efficiency, and strategic planning. Businesses across industries such as retail, logistics, real estate, agriculture, and finance leverage GeoAI to gain valuable location-based insights and enhance productivity.

For example, Amazon and Walmart use GeoAI-powered supply chain optimization to track shipments, predict demand, and improve warehouse placement. In real estate, companies like Zillow analyze geospatial data to determine property values, market trends, and risk factors such as flooding or urban expansion. Similarly, financial institutions integrate GeoAI for risk assessment, using satellite imagery and AI-driven analytics to monitor economic activities, infrastructure projects, and climate risks affecting investments.

Enterprises benefit from the geospatial artificial intelligence market to process massive datasets in real-time, improving everything from market expansion strategies to environmental compliance. With businesses prioritizing data-driven decisions, the demand for GeoAI solutions in enterprises is expected to keep growing, further solidifying its dominance in the market.

Segmentation by End Users

  • Enterprise
  • Individual

INSIGHTS BY ENTERPRISE

In the enterprise geospatial artificial intelligence market, the government & public sector is the dominant segment due to the increasing adoption of AI-driven geospatial analytics for urban planning, defense, environmental monitoring, and disaster management. Governments worldwide use GeoAI to improve decision-making, optimize public services, and enhance national security.

For example, the United States Geological Survey (USGS) leverages GeoAI to monitor land use changes, track deforestation, and assess climate risks. Similarly, the European Space Agency (ESA) uses AI-integrated satellite data for disaster resilience, mapping flood-prone areas and wildfire risks in real time. In defense, the Pentagon and NATO rely on GeoAI for surveillance, border security, and threat detection, using AI-enhanced satellite imagery and drone data to monitor geopolitical developments.

In smart city initiatives, governments like Saudi Arabia's NEOM project and India's Smart Cities Mission integrate GeoAI for traffic management, infrastructure planning, and energy efficiency. Public agencies also use GeoAI for agriculture monitoring, as seen in Brazil's National Institute for Space Research (INPE), which applies AI-powered satellite data to track illegal deforestation in the Amazon. With governments prioritizing climate resilience, infrastructure modernization, and national security, the geospatial artificial intelligence market demand in the public sector continues to grow, solidifying its dominance in the market.

Segmentation by Enterprise

  • Government & Public Sector
  • Agriculture & Forestry
  • Energy & Utilities
  • Transportation & Logistics
  • Defense & Security
  • Others

GEOSPATIAL ARTIFICIAL INTELLIGENCE MARKET GEOGRAPHICAL ANALYSIS

In 2024, North America dominated the global geospatial artificial intelligence market, accounting for a share of over 31%. In North America, the United States and Canada are leading in GeoAI adoption, primarily due to strong investments in defense, smart cities, and disaster management. The U.S. Department of Defense uses AI-powered satellite imagery for border security and military intelligence, while agencies like FEMA (Federal Emergency Management Agency) utilize GeoAI to predict and manage natural disasters like hurricanes and wildfires. In Canada, the Smart Cities Challenge has encouraged local governments to integrate AI-driven geospatial analysis for traffic optimization, energy management, and urban planning.

In Europe's geospatial artificial intelligence market, countries like Germany, the UK, and France are leveraging GeoAI for environmental monitoring and climate resilience. The European Space Agency (ESA) has launched AI-integrated satellite programs to track deforestation, air pollution, and water resource management. The UK government also invests in AI-powered geospatial tools for railway optimization and flood mapping to improve national infrastructure planning. Furthermore, Asia-Pacific is experiencing significant growth in the geospatial artificial intelligence market, led by China, India, and Japan. China's Belt and Road Initiative (BRI) uses GeoAI to analyze terrain, optimize construction sites, and improve logistics for large-scale infrastructure projects. India's National Geospatial Policy 2022 has encouraged industries to adopt AI-driven mapping solutions for agriculture, smart city development, and disaster response. Japan integrates GeoAI in earthquake prediction systems, leveraging AI-powered sensors to analyze seismic activities and improve disaster preparedness.

In the Middle East & Africa geospatial artificial intelligence market, Saudi Arabia and the UAE are investing heavily in GeoAI for smart city initiatives and national security. Saudi Arabia's NEOM project, a futuristic smart city, is using AI-driven geospatial analytics for traffic control, energy distribution, and environmental sustainability. The UAE has integrated GeoAI in drone-based surveillance systems for border security and infrastructure monitoring. In Africa, countries like South Africa and Kenya are using GeoAI for agriculture mapping, wildlife conservation, and flood prediction to improve resource management and disaster response.

Furthermore, the Latin American geospatial artificial intelligence market is also witnessing steady growth, with Brazil and Mexico leveraging GeoAI for deforestation tracking, urban expansion analysis, and climate monitoring. Brazil's INPE (National Institute for Space Research) uses AI-powered satellite imagery to combat illegal logging in the Amazon rainforest.

As governments and enterprises across the world increasingly adopt AI-powered geospatial intelligence, the GeoAI market is set to grow, playing a crucial role in urban development, environmental protection, and security enhancements across all major regions.

  • North America
    • The U.S.
    • Canada
  • Europe
  • The U.K.
    • Germany
    • France
    • Russia
    • Spain
    • Italy
    • Denmark
    • Norway
    • Poland
  • APAC
    • China
    • India
    • Japan
    • South Korea
    • Australia
    • Singapore
    • Malaysia
  • Latin America
    • Brazil
    • Mexico
    • Argentina
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa

GEOSPATIAL AI MARKET VENDOR ANALYSIS

The global geospatial artificial intelligence market is highly competitive, with many companies developing advanced AI-powered geospatial solutions to meet the growing demand for smart infrastructure, disaster management, defense, and environmental monitoring. The geospatial AI market includes a mix of large technology companies, satellite imaging firms, AI startups, and government-backed research organizations, all striving to innovate and expand their market presence.

Key players in the global geospatial artificial intelligence market include companies like Esri, Google, Microsoft, Maxar Technologies, Orbital Insight, and Airbus. These companies are investing in AI-driven satellite imaging, geospatial analytics platforms, and real-time data processing technologies to improve accuracy and efficiency in geospatial intelligence. For example, Esri, a leading geographic information system (GIS) provider, integrates AI and machine learning into its ArcGIS platform to help businesses and governments analyze satellite imagery, optimize transportation networks, and manage environmental risks. Google Earth Engine is another powerful GeoAI tool in the geospatial artificial intelligence market that enables real-time environmental monitoring by analyzing vast amounts of satellite and remote sensing data.

Maxar Technologies specializes in high-resolution satellite imaging and uses AI algorithms to detect changes in land use, track deforestation, and monitor infrastructure projects. Airbus has also developed AI-powered Earth observation services to assist governments and businesses in climate monitoring and defense applications. Furthermore, startups like Orbital Insight and SpaceKnow are revolutionizing the geospatial AI market with AI-based predictive analytics. These companies use machine learning to analyze geospatial data from satellites and drones, providing insights for industries like finance, real estate, and agriculture. For instance, Orbital Insight's AI models can estimate crop yields, monitor oil storage facilities, and track urban development trends based on satellite imagery.

Governments and defense agencies also play a significant role in shaping the geospatial artificial intelligence market landscape. Agencies such as NASA, the European Space Agency (ESA), and the Indian Space Research Organisation (ISRO) are actively investing in GeoAI-powered disaster response, climate change monitoring, and national security applications. In the U.S., the Department of Defense (DoD) uses AI-powered geospatial analysis for border security, military planning, and surveillance.

To maintain a competitive edge, companies in the GeoAI market are increasingly focusing on partnerships, acquisitions, and AI-driven innovations. For example, in 2024, Microsoft partnered with Planet Labs to integrate GeoAI into its Azure cloud services, offering businesses and government agencies better access to geospatial intelligence tools. Similarly, Amazon Web Services (AWS) has been expanding its GeoAI capabilities by collaborating with satellite data providers to offer real-time geospatial analytics for enterprises. Furthermore, as demand for AI-driven geospatial intelligence continues to grow, competition in the geospatial artificial intelligence market is expected to intensify. Companies that invest in advanced AI models, real-time analytics, and cloud-based geospatial services will likely dominate the market, driving innovation and shaping the future of the GeoAI industry.

Key Companies

  • Esri
  • Hexagon AB
  • Maxar Technologies
  • Google LLC (Alphabet Inc.)
  • Microsoft Corporation
  • IBM
  • Trimble Inc.
  • Autodesk, Inc.
  • Bentley Systems, Incorporated
  • Amazon Web Services, Inc. (AWS)
  • Airbus
  • Planet Labs PBC
  • Orbital Insight, Inc.
  • Descartes Labs, Inc.

Other Prominent Company Profiles

  • Satellogic Inc.
  • Palantir Technologies Inc.
  • Blue Sky Analytics
  • Sparkgeo
  • GeoIQ
  • 1Spatial
  • Agronomeye
  • AiDash
  • Alcis Holdings Ltd.
  • Anditi
  • ASTERRA
  • Atlas AI P.B.C.
  • Mapbox, Inc.
  • TomTom
  • HERE Technologies
  • CARTO
  • L3Harris Technologies, Inc.
  • TerraGo
  • Blue Marble Geographics
  • Northrop Grumman Corporation

KEY QUESTIONS ANSWERED:

1. How big is the global geospatial artificial intelligence market?

2. What is the growth rate of the global geospatial artificial intelligence market?

3. Who are the key players in the global geospatial artificial intelligence market?

4. What are the significant trends in the geospatial artificial intelligence market?

5. Which region dominates the global geospatial artificial intelligence market share?

TABLE OF CONTENTS

1. SCOPE & COVERAGE

  • 1.1. MARKET DERIVATION
  • 1.2. MARKET DEFINITION
  • 1.3. SEGMENT COVERAGE & DEFINITION

2. PREMIUM INSIGHTS

  • 2.1. OPPORTUNITY POCKET
  • 2.2. KEY MARKET HIGHLIGHTS
  • 2.3. REGIONAL INSIGHTS

3. MARKET DYNAMICS

  • 3.1. OPPORTUNITY & TRENDS
  • 3.2. MARKET ENABLERS
  • 3.3. MARKET RESTRAINTS
  • 3.4. INTRODUCTION
  • 3.5. MARKET LANDSCAPE

4. MARKET SEGMENTATION

  • 4.1. DEPLOYMENT MODE
  • 4.2. DATA MODEL
  • 4.3. COMPONENT
  • 4.4. TECHNOLOGY
  • 4.5. END USER

5. GEOGRAPHICAL SEGMENTATION

  • 5.1. ASIA PACIFIC (APAC)
  • 5.2. NORTH AMERICA
  • 5.3. EUROPE
  • 5.4. LATIN AMERICA
  • 5.5. MIDDLE EAST & AFRICA

6. COMPETITIVE LANDSCAPE

  • 6.1. COMPETITIVE SCENARIO
  • 6.2. MARKET SHARE ANALYSIS
  • 6.3. KEY COMPANY PROFILES
  • 6.4. OTHER PROMINENT COMPANY PROFILE