封面
市场调查报告书
商品编码
1896972

全球超级电容器市场:按类型、电极材料、电容、产业和地区划分 - 产业动态、市场规模、机会分析和预测(2026-2035 年)

Global Supercapacitors Market: By Type, Electrode Material, Capacitance, Industry, Capacitance, Region - Industry Dynamics, Market Size, Opportunity Forecast for 2026-2035

出版日期: | 出版商: Astute Analytica | 英文 300 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

超级电容器市场正处于关键转折点,预计到 2025 年将达到 54.6 亿美元。展望未来,该市场预计将经历显着扩张,到 2035 年将飙升至惊人的 555.1 亿美元。这项预期成长率代表 2026 年至 2035 年 26.1% 的显着复合年增长率 (CAGR),显示市场需求强劲,且将在众多产业中广泛应用。

推动这一市场快速成长的主要因素是电动车、再生能源和消费性电子等关键领域对先进储能解决方案的需求不断增长。在电动车领域,随着电动车在全球的普及,对高效能、耐用和高性能储能技术的需求也在不断增长。 超级电容器因其能够提供即时、高功率输出并提高整体系统效率,从而延长电池寿命并提升车辆性能,而日益受到认可,成为电池的有力补充。

市场趋势

超级电容器市场竞争异常激烈,前四大公司(北京华芯国际、Skeleton Technologies、伊顿公司和F.W. Webb)合计占超过43%的市场占有率。这种市场集中度凸显了产业领导者为保持优势而展现出的策略眼光和持续的技术创新。

爱沙尼亚储能公司Skeleton Technologies便是这种创新领导力的典范。 2025年12月,该公司在德国莱比锡附近开设了一座价值2.2亿欧元(约2.562亿美元)的製造工厂,这一消息引起了广泛关注。 该工厂专门生产石墨烯基超级电容器,这种高容量储能单元在稳定电网和支援人工智慧基础设施方面发挥关键作用。

为了进一步拓展超级电容器技术的边界,能源技术公司 Allotrop Energy 于 2025 年 7 月宣布开发出一种能量密度是现有型号两倍的超级电容器。这项突破性技术能够以更低的成本实现更大的储能,进而提高混合动力车的动力系统效率,加速绿色交通的普及。

Skeleton Technologies 持续创新,于 2025 年 6 月推出了一款专为资料中心设计的新型电源架。该产品名为“GrapheneGPU”,是一款基于石墨烯超级电容器的容量架,具备削峰功能。它利用了该公司专利的曲面石墨烯技术,无需使用锂基储能。

关键成长因素

电动车 (EV) 产业的快速扩张是推动先进储能系统需求成长的主要动力,显着促进了超级电容器市场的整体成长。随着全球电动车保有量超过 4,000 万辆,对高效、可靠且耐用的储能解决方案的需求日益增长。电动车製造商不断探索提升电池性能、延长电池寿命和提高整车效率的方法。超级电容器因其能够瞬间提供大量能量并支援再生煞车系统,已成为满足这些需求的关键技术。

新机遇

技术创新和符合道德规范的采购实践正在改变超级电容器市场,为成长和应用开闢新的可能性。材料科学的最新突破,特别是石墨烯和碳奈米管等先进电极材料的开发,显着提高了超级电容器的储能能力。 这些尖端材料实现了超过 400 Wh/kg 的能量密度,这是足以媲美传统电池技术的卓越进步。更重要的是,这些进步减少了对锂、钴和镍等关键且往往存在伦理争议的材料的依赖,在促进永续发展的同时,也解决了环境和供应链问题。

优化障碍

由于供应链的脆弱性,超级电容器市场的成长可能面临潜在的阻碍,尤其是在向高纯度合成碳材料过渡的过程中。虽然这种过渡对于提高性能和满足不断增长的需求至关重要,但它也带来了新的瓶颈,阻碍了市场扩张。一个显着的例子是,2025 年中期出现的合成石墨烯前驱体材料短缺,导致高阶超级电容器电池的价格飙升 12%。 此事件揭露了供应链的脆弱性,凸显其目前的韧性不足以支撑预计20%的复合年增长率。

目录

第一章:研究架构

  • 研究目标
  • 产品概述
  • 市场区隔

第二章:研究方法

  • 质性研究
    • 一手和二手资料来源
  • 量化研究
    • 一手和二手资料来源
  • 按地区划分的一手调查受访者组成
  • 研究假设
  • 市场规模估算
  • 资料三角验证

第三章:摘要整理:全球超级电容器市场市场

第四章:全球超级电容器市场概论

  • 产业价值链分析
    • 原料
    • 製造
    • 储存和分销
    • 终端用户
  • 行业展望
    • 超级电容器供应链图
  • PESTLE分析
  • 波特五力分析
    • 供应商议价能力
    • 买方议价能力
    • 替代品威胁
    • 新进入者威胁
    • 竞争强度
  • 市场动态与趋势
    • 成长驱动因素
    • 限制因素
    • 机遇
    • 关键因素趋势
  • 新冠疫情对市场成长趋势的影响评估
  • 市场成长与展望
    • 市场收入估计与预测(2020-2035 年)
    • 市场估计与预测(单位:百万单位),2020-2035 年
    • 价格分析(按类型)
  • 竞争格局概览
    • 市场集中度
    • 公司市占率分析(价值,%),2025 年
    • 竞争格局图

第五章 全球超级电容器市场(依类型)

  • 主要见解
  • 市场规模与预测,2020-2035 年
    • 硬币型超级电容器
    • 线绕式超级电容器
    • 复合式超级电容器
    • 模组化超级电容器
    • 高温超级电容器
    • 混合式超级电容器

第六章:全球超级电容器市场(以电极材料划分)

  • 主要见解
  • 市场规模及预测(2020-2035)
  • 碳基超级电容器
  • 金属氧化物基超电容器
  • 导电聚合物基超电容器
  • 复合材料基超电容器

第七章:全球超级电容器市场(依电容划分)

  • 主要见解
  • 市场规模及预测(2020-2035) 2020-2035
    • 低电容 (0.1μF-400μF)
    • 中电容 (400μF-900μF)
    • 高电容 (900μF-1300μF)

第八章:全球超级电容器市场(按产业划分)

  • 主要见解
  • 市场规模及预测,2020-2035
    • 汽车
    • 能源
    • 消费性电子
    • 航空航太与国防
    • 医疗
    • 其他

第九章:全球超级电容器市场(按产业和电容划分)

  • 主要见解
  • 市场规模及预测, 2020-2035
    • 汽车
    • 能源
    • 消费性电子
    • 航空航太与国防
    • 医疗
    • 其他

第十章:全球超级电容器市场区域分析

  • 主要洞察
  • 市场规模及预测,2020-2035
    • 北美
    • 欧洲
    • 亚太地区
    • 中东和非洲 (MEA)
    • 南美

第十一章:北美超级电容器市场分析

第十二章:欧洲超级电容器市场分析

第十三章:亚太地区超级电容器市场分析

第十四章:中东与非洲超级电容器市场分析

第十五章:南美洲超级电容器市场分析

第十六章:公司简介(公司概况、财务矩阵、主要产品线、主要参与者、主要竞争对手、联络地址、测量方法和业务策略展望)

  • ADA TECHNOLOGIES, INC
  • AVX
  • 北京HCC能源
  • CD Aero, LLC
  • Cornell Dubilier
  • Eaton Corporation plc
  • F.W.韦伯公司
  • 锦州凯美电源有限公司 (KAM)
  • 辽宁兄弟电子科技有限公司
  • 村田製作所
  • 日本化工株式会社
  • 上海普莱斯帕克电子有限公司
  • 深圳拓迈电子有限公司
  • Skeleton Technologies Inc.
  • Systematic Power Manufacturing, LLC
  • 特斯拉公司
  • 其他
简介目录
Product Code: AA1022313

The supercapacitors market stands at a critical inflection point, with its valuation reaching US$ 5.46 billion in 2025. Looking ahead, the market is poised for remarkable expansion, with projections estimating it will soar to an impressive US$ 55.51 billion by 2035. This anticipated growth corresponds to an exceptional compound annual growth rate (CAGR) of 26.1% over the forecast period from 2026 to 2035, signaling robust demand and widespread adoption across multiple industries.

The primary drivers fueling this rapid market growth are the increasing requirements for advanced energy storage solutions in key sectors such as electric vehicles, renewable energy, and consumer electronics. In the electric vehicle segment, the need for efficient, durable, and high-performance energy storage technologies is intensifying as EV adoption scales globally. Supercapacitors are increasingly recognized for their ability to complement batteries by providing quick bursts of power and enhancing overall system efficiency, thereby extending battery life and improving vehicle performance.

Noteworthy Market Developments

The supercapacitors market is characterized by intense competition, with the top four companies-Beijing HCC Energy, Skeleton Technologies Inc., Eaton Corporation plc, and F.W. Webb Company-commanding a combined market share exceeding 43%. This concentration of market power underscores the strategic acumen and continuous technological innovation these industry leaders have demonstrated to maintain their dominance.

A prime example of this innovative leadership is Skeleton Technologies, an Estonian energy storage firm that made headlines in December 2025 by inaugurating a EUR 220-million (approximately USD 256.2 million) manufacturing facility near Leipzig, Germany. This factory is dedicated to producing graphene-based supercapacitors-high-capacity energy storage units that play a crucial role in stabilizing electrical grids and supporting AI infrastructure.

Further pushing the boundaries of supercapacitor technology, in July 2025, energy technology company Allotrope Energy announced the development of supercapacitors boasting twice the energy density of existing models. This breakthrough holds promise for more efficient hybrid vehicle powertrains by enabling greater energy storage at reduced costs, potentially accelerating the adoption of greener transportation solutions.

Continuing their innovation streak, Skeleton Technologies unveiled in June 2025 a new power shelf designed specifically for data centers, which utilizes graphene-based supercapacitors. This product, named GrapheneGPU, is a peak-shaving capacity shelf that eliminates the need for lithium-based energy storage by relying on Skeleton Technologies' patented Curved Graphene technology.

Core Growth Drivers

The rapid expansion of the electric vehicle (EV) industry is a major driving force behind the growing demand for advanced energy storage systems, significantly contributing to the overall growth of the supercapacitors market. As the number of electric vehicles worldwide surpasses 40 million, the need for efficient, reliable, and durable energy storage solutions has become increasingly critical. EV manufacturers are continuously seeking ways to improve battery performance, extend battery life, and enhance the overall efficiency of their vehicles. Supercapacitors have emerged as an essential technology in meeting these demands, thanks to their unique ability to deliver quick bursts of energy and support regenerative braking systems.

Emerging Opportunity Trends

Technological innovation and ethical sourcing are driving transformative changes in the supercapacitors market, opening exciting new frontiers for growth and application. Recent breakthroughs in materials science, particularly the development of advanced electrode materials such as graphene and carbon nanotubes, have significantly enhanced the energy storage capabilities of supercapacitors. These cutting-edge materials allow energy densities to surpass 400 Wh/kg, a remarkable improvement that rivals traditional battery technologies. Importantly, these advancements also reduce reliance on critical and often ethically contentious materials like lithium, cobalt, and nickel, addressing environmental and supply chain concerns while promoting sustainability.

Barriers to Optimization

The growth of the supercapacitors market faces potential setbacks due to supply chain fragility, particularly linked to the shift toward high-purity synthetic carbon materials. This transition, while essential for improving performance and meeting rising demand, introduces new bottlenecks that could hamper market expansion. A notable example occurred in mid-2025 when a shortage of precursor materials for synthetic graphene led to a sharp 12% price increase in high-end supercapacitor cells. This incident exposed the vulnerability of the supply chain, highlighting that it is not yet sufficiently robust to support the projected compound annual growth rate (CAGR) of 20% in demand.

Detailed Market Segmentation

By Type, combined supercapacitors have emerged as a dominant force in the supercapacitor market, securing the largest market share of 26.6%. This significant market position is primarily due to their unique capability to bridge the essential gap between the high energy density typically associated with batteries and the rapid power delivery characteristic of traditional capacitors. By integrating the best features of both technologies, combined supercapacitors offer a versatile energy storage solution that meets the growing demand for devices requiring both quick bursts of power and sustained energy supply.

  • Based on electrode material, carbon-based supercapacitors continue to dominate the global supercapacitors market, commanding over 43.9% of the market share due to their exceptional balance of performance and cost-effectiveness. Manufacturers overwhelmingly prefer activated carbon as the electrode material because it offers a unique combination of high electrical conductivity, large surface area, and affordability compared to alternatives like metal oxides. The high surface area of activated carbon is particularly important because it allows for greater charge accumulation on the electrode surface, directly enhancing the capacitance and overall energy storage capacity of the supercapacitor.
  • Based on industry, the consumer electronics industry holds a prominent position in the supercapacitors market, accounting for a substantial 41.70% of the total market share. This significant presence reflects the growing reliance on supercapacitors to enhance the performance, reliability, and efficiency of a wide array of consumer devices. Supercapacitors are increasingly integrated into electronics such as smartphones, wearable technology, portable gadgets, and other smart devices, where they provide rapid energy storage and quick charge-discharge cycles that batteries alone may struggle to deliver.
  • Based on capacitance, the low capacitance segment holds a commanding position in the supercapacitors market, capturing a significant 45.4% share based on capacitance. This leadership is largely attributed to the widespread demand for applications that require smaller, highly reliable energy storage units. Devices such as memory backup systems, real-time clocks, and Internet of Things (IoT) sensors commonly rely on low capacitance supercapacitors to provide short bursts of power and maintain essential functions during power interruptions or low energy conditions.

Segment Breakdown

By Type

  • Coin Cell supercapacitors
  • Winding supercapacitors
  • Combined supercapacitors
  • Module supercapacitors
  • High Temperature Super Capacitors
  • Hybrid Supercapacitors

By Electrode Material

  • Carbon-Based supercapacitors
  • Metal Oxide-Based supercapacitors
  • Conducting Polymer-Based Supercapacitors
  • Composite-Based supercapacitors

By Capacitance

  • Low (0.1uF-400F)
  • Medium (400F-900F)
  • High (900F-1300F)

By Industry

  • Automotive
  • Energy
  • Consumer Electronics
  • Aerospace & Defense
  • Healthcare
  • Others

By Region

  • North America
  • US
  • Canada
  • Mexico
  • Europe
  • Western Europe
  • The UK
  • Germany
  • France
  • Spain
  • Rest of Western Europe
  • Eastern Europe
  • Poland
  • Russia
  • Rest of Eastern Europe
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia & New Zealand
  • South Korea
  • ASEAN
  • Rest of Asia Pacific
  • South America
  • Argentina
  • Brazil
  • Rest of South America
  • Middle East & Africa
  • UAE
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Geography Breakdown

  • In 2025, the Asia Pacific region holds an impressive 54.40% share of the global supercapacitors market, showcasing its dominant position in this rapidly growing sector. This strong leadership is primarily fueled by China's vigorous industrial expansion and strategic initiatives to incorporate advanced energy storage technologies. A significant factor behind this dominance is China's extensive deployment of supercapacitors within its national power grid,
  • China's manufacturing hubs, particularly in Jiangsu province, have played a crucial role in maintaining this competitive edge. Local manufacturers have achieved remarkable success in reducing the unit production costs of small supercapacitor cells to as low as USD 0.05. This cost efficiency is a result of optimized production processes, economies of scale, and technological advancements, making it extremely challenging for foreign competitors to penetrate the market.

Leading Market Participants

  • ADA TECHNOLOGIES, INC
  • Beijing HCC Energy
  • CD Aero, LLC
  • Cornell Dubilier
  • Eaton Corporation plc
  • F.W. Webb Company
  • Jinzhou Kaimei Power Co., Ltd (KAM)
  • Liaoning Brother Electronics Technology Co., Ltd
  • Murata Manufacturing Co., Ltd.
  • Nippon Chemi-Con Corporation
  • Shanghai Pluspark Electronics Co., Ltd.
  • Shenzhen Topmay Electronic Co., Ltd
  • Skeleton Technologies Inc.
  • Systematic Power Manufacturing, LLC
  • AVX
  • Tesla, Inc
  • Other Major Players

Table of Content

Chapter 1. Research Framework

  • 1.1. Research Objective
  • 1.2. Product Overview
  • 1.3. Market Segmentation

Chapter 2. Research Methodology

  • 2.1. Qualitative Research
    • 2.1.1. Primary & Secondary Sources
  • 2.2. Quantitative Research
    • 2.2.1. Primary & Secondary Sources
  • 2.3. Breakdown of Primary Research Respondents, By Region
  • 2.4. Assumption for the Study
  • 2.5. Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Supercapacitors Market

Chapter 4. Global Supercapacitors Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Raw material
    • 4.1.2. Manufacturing
    • 4.1.3. Storage and Distribution
    • 4.1.4. End users
  • 4.2. Industry Outlook
    • 4.2.1. Supply Chain Mapping of Supercapacitors
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Opportunities
    • 4.5.4. Key Trends
  • 4.6. Covid-19 Impact Assessment on Market Growth Trend
  • 4.7. Market Growth and Outlook
    • 4.7.1. Market Revenue Estimates and Forecast (US$ Bn), 2020 - 2035
    • 4.7.2. Market Volume Estimates and Forecast (Mn Units), 2020 - 2035
    • 4.7.3. Pricing Analysis, By Type
  • 4.8. Competition Dashboard
    • 4.8.1. Market Concentration Rate
    • 4.8.2. Company Market Share Analysis (Value %), 2025
    • 4.8.3. Competitor Mapping

Chapter 5. Global Supercapacitors Market, By Type

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 5.2.1. Coin Cell Supercapacitors
    • 5.2.2. Winding Supercapacitors
    • 5.2.3. Combined Supercapacitors
    • 5.2.4. Module Supercapacitors
    • 5.2.5. High Temperature super Capacitors
    • 5.2.6. Hybrid Supercapacitors

Chapter 6. Global Supercapacitors Market, By Electrode Material

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 6.2.1. Carbon-Based Supercapacitors
    • 6.2.2. Metal Oxide-Based Supercapacitors
    • 6.2.3. Conducting Polymer-Based Supercapacitors
    • 6.2.4. Composite-Based Supercapacitors

Chapter 7. Global Supercapacitors Market, By Capacitance

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 7.2.1. Low (0.1uF - 400F)
    • 7.2.2. Medium (400F - 900F)
    • 7.2.3. High (900F -1300F)

Chapter 8. Global Supercapacitors Market, By Industry

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 8.2.1. Automotive
    • 8.2.2. Energy
    • 8.2.3. Consumer Electronics
    • 8.2.4. Aerospace & Defense
    • 8.2.5. Healthcare
    • 8.2.6. Others

Chapter 9. Global Supercapacitors Market, By Industry, By Capacitance

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 9.2.1. Automotive
      • 9.2.1.1. Low (0.1uF - 400F)
      • 9.2.1.2. Medium (400F - 900F)
      • 9.2.1.3. High (900F -1300F)
    • 9.2.2. Energy
      • 9.2.2.1. Low (0.1uF - 400F)
      • 9.2.2.2. Medium (400F - 900F)
      • 9.2.2.3. High (900F -1300F)
    • 9.2.3. Consumer Electronics
      • 9.2.3.1. Low (0.1uF - 400F)
      • 9.2.3.2. Medium (400F - 900F)
      • 9.2.3.3. High (900F -1300F)
    • 9.2.4. Aerospace & Defense
      • 9.2.4.1. Low (0.1uF - 400F)
      • 9.2.4.2. Medium (400F - 900F)
      • 9.2.4.3. High (900F -1300F)
    • 9.2.5. Healthcare
      • 9.2.5.1. Low (0.1uF - 400F)
      • 9.2.5.2. Medium (400F - 900F)
      • 9.2.5.3. High (900F -1300F)
    • 9.2.6. Others
      • 9.2.6.1. Low (0.1uF - 400F)
      • 9.2.6.2. Medium (400F - 900F)
      • 9.2.6.3. High (900F -1300F)

Chapter 10. Global Supercapacitors Market Analysis, By Region

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 10.2.1. North America
      • 10.2.1.1. The U.S.
      • 10.2.1.2. Canada
      • 10.2.1.3. Mexico
    • 10.2.2. Europe
      • 10.2.2.1. Western Europe
        • 10.2.2.1.1. The UK
        • 10.2.2.1.2. Germany
        • 10.2.2.1.3. France
        • 10.2.2.1.4. Italy
        • 10.2.2.1.5. Spain
        • 10.2.2.1.6. Rest of Western Europe
      • 10.2.2.2. Eastern Europe
        • 10.2.2.2.1. Poland
        • 10.2.2.2.2. Russia
        • 10.2.2.2.3. Rest of Eastern Europe
    • 10.2.3. Asia Pacific
      • 10.2.3.1. China
      • 10.2.3.2. India
      • 10.2.3.3. Japan
      • 10.2.3.4. South Korea
      • 10.2.3.5. Australia & New Zealand
      • 10.2.3.6. ASEAN
      • 10.2.3.7. Rest of Asia Pacific
    • 10.2.4. Middle East & Africa (MEA)
      • 10.2.4.1. UAE
      • 10.2.4.2. Saudi Arabia
      • 10.2.4.3. South Africa
      • 10.2.4.4. Rest of MEA
    • 10.2.5. South America
      • 10.2.5.1. Brazil
      • 10.2.5.2. Argentina
      • 10.2.5.3. Rest of South America

Chapter 11. North America Supercapacitors Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 11.2.1. By Type
    • 11.2.2. By Electrode Material
    • 11.2.3. By Capacitance
    • 11.2.4. By Industry
    • 11.2.5. By Industry, By Capacitance
    • 11.2.6. By Country

Chapter 12. Europe Supercapacitors Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 12.2.1. By Type
    • 12.2.2. By Electrode Material
    • 12.2.3. By Capacitance
    • 12.2.4. By Industry
    • 12.2.5. By Industry, By Capacitance
    • 12.2.6. By Country

Chapter 13. Asia Pacific Supercapacitors Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 13.2.1. By Type
    • 13.2.2. By Electrode Material
    • 13.2.3. By Capacitance
    • 13.2.4. By Industry
    • 13.2.5. By Industry, By Capacitance
    • 13.2.6. By Country

Chapter 14. Middle East & Africa Supercapacitors Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 14.2.1. By Type
    • 14.2.2. By Electrode Material
    • 14.2.3. By Capacitance
    • 14.2.4. By Industry
    • 14.2.5. By Industry, By Capacitance
    • 14.2.6. By Country

Chapter 15. South America Supercapacitors Market Analysis

  • 15.1. Key Insights
  • 15.2. Market Size and Forecast, 2020 - 2035 (US$ Bn and Mn Units)
    • 15.2.1. By Type
    • 15.2.2. By Electrode Material
    • 15.2.3. By Capacitance
    • 15.2.4. By Industry
    • 15.2.5. By Industry, By Capacitance
    • 15.2.6. By Country

Chapter 16. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, Measurement Methods and Business Strategy Outlook)

  • 16.1. ADA TECHNOLOGIES, INC
  • 16.2. AVX
  • 16.3. Beijing HCC Energy
  • 16.4. CD Aero, LLC
  • 16.5. Cornell Dubilier 
  • 16.6. Eaton Corporation plc
  • 16.7. F.W. Webb Company
  • 16.8. Jinzhou Kaimei Power Co. Ltd (KAM) 
  • 16.9. Liaoning Brother Electronics Technology Co. Ltd
  • 16.10. Murata Manufacturing Co., Ltd.
  • 16.11. Nippon Chemi-Con Corporation
  • 16.12. Shanghai Pluspark Electronics Co. Ltd
  • 16.13. Shenzhen Topmay Electronic Co., Ltd
  • 16.14. Skeleton Technologies Inc.
  • 16.15. Systematic Power Manufacturing, LLC
  • 16.16. Tesla, Inc
  • 16.17. Other prominent players