市场调查报告书
商品编码
1297001
飞机 LRU 的全球市场Global Aircraft LRU Market |
LRU(线路可更换单元)是先进的组件,可用作飞行管理、平视显示器和其他飞机系统操作的子系统接口。 这些设备采用微控制器和FPGA(现场可编程门阵列)来实现高度可靠的信息显示和控制功能。 开放式架构设计的一个突破是“数字主干网”的预期使用。 通过将航空系统的数字主干与飞机的任务系统解耦,任务系统的未来变化或更新不太可能对航空网络产生不利影响。 希望这一战略能够在未来几年简化并加速直升机技术更新。 它不仅最大限度地减少了重新认证整个飞机总线架构的需要,而且还消除了每次添加新技术或功能时进行回归测试的需要。
FACE(未来机载能力环境TM)方法是政府和行业製定的软件标准。 FACE 方法结合了技术和业务实践,创建了一个标准的共享操作环境,其功能可以在航空电子系统之间转移。
FACE技术标准提供了架构部分以及集成这些部分的重要接口的规范。 这使得能够在不同的硬件计算环境中重用基于功能的软件组件。 它还可以在系统生命週期内引入新的和改进的功能以及快速替换现有软件。 FACE 方法与永久系统和未来系统相关,包括新系统设计、系统级升级和组件升级。
飞机 LRU 市场是由对开放架构系统不断增长的需求推动的。 世界各地的军队越来越关注以网络为中心的战争并转向互操作性。 这些市场趋势将推动LRU市场的增长。
LRU的轻量化、小型化将是影响市场增长的主要市场趋势。 遵守开放架构和即将推出的标准,例如 MOSA(模块化开放系统架构)也是一个关键的市场趋势。
国防支出的增加推动了新的采购活动和将现有平台更新为新功能的市场。 国防支出的增加推动了运输机、战斗机、直升机和无人驾驶系统等新型飞机的采购。 采购也将受到欧洲和亚太地区政治气候的推动。
未来垂直升力 (FVL) 计划是美国陆军最重要和最具突破性的举措之一,它是下一代直升机的开放式架构设计概念,它将接替 OH58 Kiowa Warrior、AH64 Apache 和 UH60 Black Hawk。通过了。 这些举措是 MOSA 概念真正的分水岭时刻。 陆军将 MOSA 视为一种为飞机和任务系统电子设备建立客观架构的方法,使其能够更好地控制系统更新过程。
此外,MOSA 将帮助政府实现尽可能在两种获奖飞机设计之间建立共性的目标。 这种共性使得陆军不再需要仅仅依赖主承包商来进行系统现代化。 相反,子系统架构的描述足够准确,使政府能够通过第三方提供商满足更新要求,从而促进竞争、互操作性和成本节约。 展望未来,MOSA 方法将为陆军提供更大的灵活性,缩短部署时间,并实现长期成本节约。
AeroVironment 已从阿拉巴马州红石兵工厂陆军合同司令部获得价值 1100 万美元的合同。 无人机系统 RQ-20 Puma Long-Endurance (LE) 适用于侦察任务,与 AeroVironment 的远程跟踪天线相结合,手动操作的 Puma LE 的陆地、海上和空中工作范围为 37.3 英里。 对于白天和夜间操作,操作员可以在 Mantis i45 和可选的 Mantis i45 N 之间切换。 其可互操作、即插即用的 LRU 组件可与其他 Puma 全环境 (AE) 飞机互换。
Genesys Aerosystems Inc. 被选中更新 HAL 的 HINDUSTAN-228。 HAL 与 S-TEC 4000R 自动驾驶系统的合作为 HINDUSTAN-228 平台带来了最先进的数字自动驾驶系统,并为 HINDUSTAN-228 飞机添加了 VNAV 功能和增强安全性等附加功能。 这项工作还为该平台提供了近 20 年的扩展支持。 S-TEC 4000R 是一款 3 轴、基于姿态的远程安装飞行控制系统,专为 4 级第 23 部分飞机而开发。 S-TEC 4000R 集成了独立的飞行引导计算机 (FGC) 和模式控制面板 (MCP),为空间有限的飞机中航空电子设备 LRU 的放置提供了最佳的灵活性。 MCP 由用于控制飞行员选择的自动驾驶模式的按钮组成。
LRUs are advanced assemblies that serve as sub-system interfaces for flight management, heads-down displays, and other aircraft system operations. These devices employ microcontrollers or Field Programmable Gate Arrays (FPGA) to produce high-reliability information display and control features. A leap forward for open architecture design is the anticipated usage of "digital backbones". Separating the aviation system's digital backbone from the aircraft's mission systems reduces the potential that any future changes or upgrades to the mission systems will have an undesirable influence on the aviation network. This strategy promises to simplify and accelerate technology renewal for these helicopters for years to come, minimizing the need to recertify the entire aircraft bus architecture as well as the necessity for regression testing anytime new technologies or capabilities are added.
The Future Airborne Capability EnvironmentTM (FACE) Approach is a software standard established by the government and industry. The FACE Approach combines technological and business practices to create a standard shared operating environment with transferable capabilities across avionics systems.
The FACE Technical Standard provides the specifications for architectural segments and essential interfaces that bring the segments together. This allows capability-based software components to be reused across diverse hardware computing environments. It also allows for the rapid replacement of existing software as well as the introduction of new and improved capabilities during the system's lifecycle. The FACE Approach is relevant to both lasting systems and future systems, including new system designs, system-level upgrades, and component upgrades.
Aircraft LRU market will be driven by increasing demand for open architecture systems. Armed forces around the world are moving towards interoperability with increasing emphasis on network centric warfare. These market trends will drive the growth of the LRU market.
Lightweight and small form factor LRU will be the main market trend that will influence the growth of the market. Compliance with open architecture and upcoming standards such as Modular Open Systems Architecture (MOSA) will also be one of the key market trend.
Increasing defense spending will drive the market for new procurement activities and upgrades to existing platforms with newer capabilities. The increase in defense spending will encourage procurement of new aircrafts such as transport aircrafts, fighter aircrafts, helicopters and unmanned systems. Procurement will also be driven by prevailing geo political conditions in Europe and the Asia Pacific.
The Future Vertical Lift (FVL) program, one of the United States Army's most critical and game-changing efforts, is fully adopting the open architecture design philosophy for the next-generation helicopters that will replace the OH58 Kiowa Warrior, AH64 Apache, and UH60 Black Hawk rotorcraft. These initiatives are a true watershed moment for the Modular Open Systems Architecture (MOSA) concept. The Army sees MOSA as the way to establishing an objective architecture for both aircraft and mission systems electronics that will give more control over the system-upgrade process.
Furthermore, MOSA will assist the government in achieving its goal of establishing commonality between the two winning aircraft designs whenever practicable. Because of this commonality, the Army will no longer have to rely solely on the prime contractor to modernize a system. Instead, the subsystem architecture will be described with enough precision that the government will be able to meet update requirements through third-party providers, fostering competition, interoperability, and cost savings. Going ahead, the MOSA method will give the Army with greater flexibility, cut time to deployment, and deliver long-term savings.
AeroVironment has been awarded a $11 million contract by the Army Contracting Command at Redstone Arsenal in Alabama. Unmanned aircraft system RQ-20 Puma Long-Endurance (LE) for surveillance missions. When combined with the AeroVironment long-range tracking antenna, the hand-launched Puma LE has an operational range of 37.3 miles over land and sea. For day and night operations, operators can switch between the Mantis i45 and the optional Mantis i45 N. Its interoperable, plug-and-play line-replaceable unit (LRU) components can be exchanged with other Puma all-environment (AE) aircraft.
Genesys Aerosystems Inc. Selected for HAL HINDUSTAN-228 Upgrade. HAL's work with the S-TEC 4000R autopilot system will bring the latest digital autopilot system to the HINDUSTAN-228 platform, as well as additional features such as VNAV capability and better safety to the HINDUSTAN-228 aircraft. The initiative will also provide almost 20 years of extended platform support. The S-TEC 4000R is a three-axis, attitude-based, remote-mounted flight control system developed for Class 4, Part 23 aircraft. The S-TEC 4000R incorporates a separate flight guidance computer (FGC) and mode control panel (MCP) for optimum flexibility in avionics LRU placement within aircraft with limited space. The MCP is made of buttons that allow the pilot to control the autopilot mode that has been selected.