![]() |
市场调查报告书
商品编码
1383250
全球运载火箭航空电子设备市场(2023-2033)Global Launch Vehicle Avionics Market 2023-2033 |
安装在运载火箭上并在任务各个阶段负责导引、导航、控制 (GNC) 和通讯的电子系统和组件称为运载火箭航空电子设备。 这些航空电子系统对于成功发射并将有效载荷送至所需轨道至关重要。
飞行计算机是航空电子系统的中央处理单元,执行计算、执行控制演算法并协调不同子系统之间的资料交换。 它还即时处理感测器资料处理、轨迹计算和执行器控制等任务。 GNC系统决定运载火箭的位置、速度和姿态并控制其轨迹。 这些通常由加速度计、陀螺仪和 GPS 接收器等感测器组成,为导航演算法提供输入值。
为了确保准确的轨迹和任务目标,GNC 系统计算运载火箭控制的最佳命令,包括推力向量控制和转向。 在执行任务期间,运载火箭会产生大量数据,包括运载器健康状况、感测器读数和遥测数据。 遥测系统收集、处理运载火箭的数据并将其传输到地面控制中心,从而可以即时监控和分析运载火箭的性能。
在执行任务期间,运载火箭会产生大量数据,包括车辆健康状况、感测器读数和遥测数据。 遥测系统收集、处理运载火箭的数据并将其传输到地面控制中心,从而可以即时监控和分析运载火箭的性能。 运载火箭电子设备需要可靠、高效率的电源。
配电和管理系统负责将电力分配给各个子系统,并确保每个组件接收适当的电压和电流。 这些系统通常包括备用电源、电压调节和故障保护机制。 航空电子系统使用各种感测器来收集有关运载火箭性能和环境的资讯。 这些感测器的范例包括加速度计、陀螺仪、高度计、压力感测器、温度感测器和姿态感测器。 这些感测器的数据用于即时控制、监控和安全评估。 航空电子软体由嵌入式软体和演算法组成,用于控制运载火箭操作、处理资料以及执行导引和控制功能。 软体开发包括严格的测试、验□□证和确认,以确保可靠性和稳健性。
航空电子系统必须与运载火箭的其他子系统无缝集成,包括推进系统、结构系统和有效载荷系统。 建立介面标准和协定是为了实现航空电子设备和其他元件之间的资料交换和互通性。
本报告分析了全球运载火箭航空电子设备市场,研究了整体市场规模的趋势、按地区和国家划分的详细趋势、关键技术概述和市场机会。Masu。
The electronic systems and components installed on a launch vehicle that is responsible for its guidance, navigation, control, and communication during all phases of the mission are referred to as launch vehicle avionics. These avionics systems are critical to the successful launch and delivery of payloads to their desired orbits.
Flight computers serve as the avionics system's central processing units, performing computations, executing control algorithms, and coordinating data exchange between different subsystems. They handle tasks such as sensor data processing, trajectory calculations, and actuator control in real-time. GNC systems oversee determining the position, velocity, and attitude of the launch vehicle, as well as controlling its trajectory. They are typically made up of sensors like accelerometers, gyroscopes, and GPS receivers that provide input to navigation algorithms.
To ensure precise trajectory and mission objectives, the GNC system calculates optimal commands for vehicle control, including thrust vector control and steering. During a mission, launch vehicles generate massive amounts of data, including vehicle health status, sensor measurements, and telemetry data. Telemetry systems collect, process, and transmit data from the launch vehicle to the ground control center, allowing for real-time monitoring and analysis of the launch vehicle's performance.
During a mission, launch vehicles generate massive amounts of data, including vehicle health status, sensor measurements, and telemetry data. Telemetry systems collect, process, and transmit data from the launch vehicle to the ground control center, allowing for real-time monitoring and analysis of the launch vehicle's performance. Avionics on launch vehicles require a dependable and efficient power supply.
Power distribution and management systems are in charge of distributing electrical power to various subsystems and ensuring that each component receives the proper voltage and current. These systems frequently include backup power sources, voltage regulation, and fault protection mechanisms. Avionics systems use a variety of sensors to collect information about the launch vehicle's performance and the environment. Accelerometers, gyroscopes, altimeters, pressure sensors, temperature sensors, and attitude determination sensors are examples of these sensors. These sensors' data is used for real-time control, monitoring, and safety evaluations. Avionics software consists of embedded software and algorithms that control the launch vehicle's operations, process data, and perform guidance and control functions. To ensure reliability and robustness, software development includes rigorous testing, verification, and validation.
Avionics systems must be seamlessly integrated with the launch vehicle's other subsystems, such as propulsion, structures, and payload systems. To enable data exchange and interoperability between avionics and other components, interface standards and protocols are established.