人工智慧应用:全球视角
市场调查报告书
商品编码
1859694

人工智慧应用:全球视角

AI Adoption: A Global Perspective

出版日期: | 出版商: BCC Research | 英文 131 Pages | 订单完成后即时交付

价格

本报告对人工智慧硬体、软体和服务解决方案进行了深入分析,包括对每种解决方案的公司估值。

该报告还对人工智慧在各个终端用户行业的应用趋势进行了说明分析,并包含了每个行业的案例研究。

报告内容

  • 对主要产业和全球区域的人工智慧应用趋势进行全面、即时的分析
  • 关于人工智慧采用概况、过往里程碑、相关法规和标准以及美国关税对人工智慧采用的影响的数据和分析
  • 人工智慧在各个终端用户产业成功案例案例研究
  • 对人工智慧硬体、软体和服务解决方案进行详细分析,并对每项解决方案进行公司评估。
  • 分析北美、欧洲、亚太、南美以及中东和非洲等地区的AI采用趋势,并确定影响采用的因素。
  • 基于业务流程改善和产品开发的案例研究分析,识别人工智慧实施中的关键挑战
  • 分析未来几年人工智慧在关键产业的应用潜力,同时考虑技术进步和产业需求的变化。
  • 企业关键策略倡议、人工智慧相关市场支出与投资趋势的分析

目录

第一章执行摘要

  • 研究目标和目的
  • 调查范围
  • 市场摘要
  • 引言视角
  • 投资情境
  • 未来趋势与发展
  • 产业分析
  • 区域洞察
  • 结论

第二章 市场概览

  • 人工智慧实施概述
  • 人工智慧应用的发展历程
  • 重要历史里程碑
  • 人工智慧爆炸:2020 年及以后
  • 人工智慧的现状
  • 主要技术模型
  • 人工智慧实施的法规和标准
  • EU
  • 德国
  • 美国
  • 中国
  • 日本
  • 韩国
  • 印度
  • 人工智慧普及的主要障碍
  • 缺乏知识
  • 资料隐私
  • 整合挑战
  • 美国关税法对人工智慧普及的影响

第三章:硬体解决方案中的人工智慧应用

  • 重点总结
  • 按硬体类型分類的采用情况分析
  • 人工智慧处理器和加速器
  • 记忆
  • 人工智慧资料中心基础设施
  • 领先人工智慧硬体供应商的当前和未来创新

4. MCP伺服器技术采用分析

  • 重点总结
  • 概述
  • MCP 伺服器架构
  • 引言趋势(2024年11月后)
  • MCP 伺服器提供者分析
  • 技术创新
  • 重大策略发展
  • 投资情境
  • 未来投资趋势
  • 应用
  • 主要应用领域
  • 真实案例研究
  • 结论

第五章:软体解决方案中的人工智慧应用

  • 重点总结
  • 部署分析
  • 人工智慧在商业职能中的应用:趋势与影响
  • 人工智慧平台
  • 主要人工智慧软体供应商的现状和未来计划
  • 人工智慧的实际应用
  • 人工智慧整合的关键领域

第六章:人工智慧在服务解决方案的应用

  • 重点总结
  • 按服务类型进行的采用率分析
  • 专业服务
  • 託管服务
  • 主要服务供应商的当前和未来计划

第七章:人工智慧在业界的应用

  • 重点总结
  • 产业采纳分析
  • 卫生保健
  • 银行、金融服务和保险
  • 物流和供应链
  • 零售与电子商务
  • 教育/教育科技
  • 媒体与娱乐
  • 通讯
  • 其他(农业、汽车、製造业、能源与公共产业)
  • 未来展望
  • 人工智慧应用的关键产业发展趋势

第八章:各地区的人工智慧应用趋势

  • 重点总结
  • 部署分析
  • 北美洲
  • 欧洲
  • 亚太地区
  • 拉丁美洲
  • 中东和非洲
  • 负责任地采用人工智慧面临的区域性挑战

第九章:人工智慧应用案例研究

  • 引入人工智慧以改善业务流程
  • 案例一:通用电气采用Predix平台
  • 案例二:通用汽车简化车辆检验流程
  • 案例3:卑诗省投资管理公司运用人工智慧优化运营
  • 案例 4:BP 石油天然气部门:提高营运效率
  • 案例5:达美航空利用人工智慧提高营运效率
  • 案例 6:美国银行采用人工智慧工具“Erica”
  • 案例7:Zodiac Maritime公司的AI增强型碰撞预测系统
  • 案例 8:德国电信利用人工智慧提高营运效率
  • 案例9:鹿特丹港的智慧货柜管理
  • 案例 10:福斯公司采用亚马逊的人工智慧工具
  • 案例 11:克罗格公司利用人工智慧优化货架和价格
  • 人工智慧在产品/服务创新的应用
  • 案例一:人工智慧驱动的电子健康记录(EHR)优化
  • 案例二:沃达丰的AI赋能客户服务
  • 案例 3:零售业的预测分析
  • 案例 4:万事达卡利用人工智慧优化支付处理
  • 案例 5:与西门子数位化工业软体合作开发人工智慧解决方案
  • 案例 6:罗彻斯特大学医学中心与 Butterfly Network 合作开发人工智慧
  • 案例7:OSF医疗保健公司使用人工智慧虚拟助手
  • 案例 8:Valley Bank 的洗钱防制人工智慧
  • 案例9:欧洲管理和商学院的人工智慧工具
  • 案例 10:AT&T 利用人工智慧变革客户服务
  • 案例 11:博尔顿学院的人工智慧影片製作平台
  • 案例 12:丝芙兰在美妆零售领域的 AI 创新
  • 运用人工智慧改善客户体验
  • 案例 1:Motel Rocks 客户服务自动化
  • 案例二:百思买的AI购物助手
  • 案例 3:OPPO 的 AI 客户支持
  • 案例 4:DevRev 基于 Turing AI 的支援工单自动化
  • 案例 5:Unity AI 客户支援自动化
  • 案例 6:Esusu 的金融科技人工智慧支持
  • 案例 7:指南针 AI 联络人路由
  • 案例 8:英特尔的 AI 技术支援聊天机器人
  • 案例 9:Shopify 预测性个人化
  • 案例 10:星巴克人工智慧驱动的会员个人化
  • 案例 11:BloomsyBox 生成式人工智慧客户参与

第十章:人工智慧应用的未来

  • 预报与预报
  • 组织影响:采纳、认知和投资讯号
  • 人工智慧在主要产业应用的未来
  • 卫生保健
  • 银行、金融服务和保险
  • 物流和供应链
  • 媒体与娱乐
  • 教育机构
  • 零售与电子商务

第十一章附录

Product Code: AIT001B

This report provides an in-depth analysis of AI hardware, software, and service solutions, including company evaluations for each solution. It covers a descriptive analysis of AI adoption across various end-use industries as well as case studies for each industry.

Report Scope

This report aims to provide a thorough and detailed analysis of the current and future state of AI applications. Its scope includes a multifaceted review, covering both the technological progress driving AI and the various ways these developments are being used across different industries and by emerging businesses.

The following parameters define the scope of the report:

  • The report will explore AI hardware, software, and service solutions and provide a detailed overview of key developments and innovations. It will define each solution and highlight its significance in the evolving AI ecosystem.
  • The report covers a descriptive analysis of AI adoption across various end-use industries. Case studies will be included at the application level within these sectors to provide deeper insight.
  • The study highlights AI adoption trends across North America, Europe, Asia-Pacific, South America, and the Middle East and Africa (MEA).
  • The report identifies major challenges affecting AI implementation based on case study analyses for business process improvement and product development.
  • It will also outline key government guidelines, regulations, and standards such as the EU AI Act, which are driving the rapid adoption of AI globally.

Report Includes

  • A comprehensive and real-time analysis of AI adoption trends across major industries and global regions.
  • Facts and figures pertaining to adoption overview, historical milestones, regulations and standards, and the impact of U.S. tariff laws on AI adoption.
  • Case studies for successful implementation of AI across various end-use industries.
  • An in-depth analysis of AI hardware, software, and service solutions, including company evaluations for each solution.
  • AI adoption trends at the regional levels, featuring North America, Europe, Asia-Pacific, South America, and the Middle East and Africa (MEA) and factors influencing the adoption
  • Identification of major challenges affecting AI implementation based on case study analyses for business process improvement and product development.
  • The potential for AI adoption in key industries over the coming years, considering technological progress and evolving industry demands.
  • Analysis of companies' key strategic initiatives, market spendings on AI and an investment outlook

Table of Contents

Chapter 1 Executive Summary

  • Study Goals and Objectives
  • Scope of Report
  • Market Summary
  • Adoption Viewpoint
  • Investment Scenario
  • Future Trends and Developments
  • Industry Analysis
  • Regional Insights
  • Conclusion

Chapter 2 Market Overview

  • AI Adoption Overview
  • Evolution of AI Adoption
  • Key Historical Milestones
  • AI Surge: Post 2020
  • Current State of AI
  • Key Technology Models
  • Regulations and Standards for AI Adoption
  • European Union
  • Germany
  • U.S.
  • China
  • Japan
  • South Korea
  • India
  • Key Barriers for AI Adoption
  • Lack of Knowledge
  • Data Privacy
  • Integration Challenges
  • Impact of U.S. Tariff Laws on AI Adoption

Chapter 3 AI Adoption in Hardware Solutions

  • Key Takeaways
  • Adoption Analysis by Hardware Type
  • AI Processors and Accelerators
  • Memory
  • AI Data Center Infrastructure
  • Current and Future Innovations of Key AI Hardware Providers

Chapter 4 Analysis of MCP Server Technology Adoption

  • Key Takeaways
  • Overview
  • MCP Server Architecture
  • Deployment and Adoption Trends (Since November 2024)
  • Analysis of MCP Server Providers
  • Technological Innovation
  • Key Strategic Developments
  • Investment Scenario
  • Future Investment Trends
  • Applications
  • Major Applicational Areas
  • Real-World Case Studies
  • Conclusion

Chapter 5 AI Adoption in Software Solutions

  • Key Takeaways
  • Adoption Analysis
  • AI in Business Functions 2025: Trends and Impact
  • AI Platforms
  • Current and Future Plans of Key AI Software Providers
  • Real-World Applications of Artificial Intelligence
  • Key Areas of the AI Integration

Chapter 6 AI Adoption in Service Solutions

  • Key Takeaways
  • Adoption Analysis by Service Type
  • Professional Services
  • Managed Services
  • Current and Future Plans for Key Service Providers

Chapter 7 AI Adoption by Industries

  • Key Takeaways
  • Adoption Analysis by Industry
  • Healthcare
  • Banking, Financial Services, and Insurance
  • Logistics and Supply Chain
  • Retail and eCommerce
  • Education and EdTech
  • Media and Entertainment
  • Telecommunication
  • Others (Agriculture, Automotive, Manufacturing, Energy and Utilities, and More)
  • Future Outlook
  • Key Developments in the Industrial Sector for AI Adoption

Chapter 8 AI Adoption Trends by Regions

  • Key Takeaways
  • Adoption Analysis
  • North America
  • Europe
  • Asia-Pacific
  • Latin America
  • Middle East and Africa
  • Regional Challenges in Responsible AI Adoption

Chapter 9 Case Studies on AI Adoption

  • AI Implementation to Improve Business Processes
  • Case Study 1: General Electric's Deployment of Predix Platform
  • Case Study 2: General Motors' Vehicle Inspection Process Efficiency
  • Case Study 3: British Columbia Investment Management Corp. Implemented AI to Optimize Business Procedures
  • Case Study 4: AI for Operational Efficiency in Oil and Gas at BP
  • Case Study 5: Delta Airlines Improved Operational Efficiency Using AI
  • Case Study 6: Bank of America's Adoption of AI Tool Erica
  • Case Study 7: Zodiac Maritime's AI-Enhanced Collision Prediction System
  • Case Study 8: Deutsche Telekom Improving Operational Efficacy with AI
  • Case Study 9: Port of Rotterdam's Smart Container Management
  • Case Study 10: Fox Corp. Implemented Amazon's AI-Driven Tools
  • Case Study 11: Kroger's Intelligent Shelving and Pricing Optimization
  • AI Implementation for Product/Service Innovation
  • Case Study 1: AI-powered Electronic Health Records Optimization
  • Case Study 2: Vodafone's AI-driven Customer Service
  • Case Study 3: Predictive Analytics in Retail
  • Case Study 4: Mastercard Optimized Payment Processing with AI
  • Case Study 5: Siemens Digital Industries Software Developed an AI Solution
  • Case Study 6: Collaboration Between the University of Rochester Medical Center and Butterfly Network
  • Case Study 7: OSF HealthCare's AI-powered Virtual Assistant
  • Case Study 8: Valley Bank's Anti-money Laundering
  • Case Study 9: AI-powered Tool for European School of Management and Business
  • Case Study 10: AT&T Transformed Customer Service with AI
  • Case Study 11: Bolton College's AI-powered Video Creation Platform
  • Case Study 12: Sephora's Innovation in Beauty Retail
  • AI Implementation for Customer Experience Enhancement
  • Case Study 1: Motel Rocks Customer Service Automation
  • Case Study 2: Best Buy's AI Shopping Assistant
  • Case Study 3: OPPO's AI-powered Customer Support
  • Case Study 4: DevRev Turing AI-Support Ticket Automation
  • Case Study 5: Unity - AI Customer Support Automation
  • Case Study 6: Esusu - Fintech AI Support
  • Case Study 7: Compass - AI Query Routing
  • Case Study 8: Intel - AI Technical Support Chatbots
  • Case Study 9: Shopify - Predictive Personalization
  • Case Study 10: Starbucks - AI-driven Loyalty Personalization
  • Case Study 11: BloomsyBox - Generative AI for Customer Engagement

Chapter 10 Future of AI Adoption

  • Forecasts and Predictions
  • Impact on Organizations: Adoption, Perception, and Investment Signals
  • Future of AI Adoption in Key Industries
  • Healthcare
  • Banking, Financial Services, and Insurance
  • Logistics and Supply Chain
  • Media and Entertainment
  • Education Institutions
  • Retail and E-Commerce

Chapter 11 Appendix

  • Methodology
  • References
  • Abbreviations

List of Tables

  • Table 1 : Key Historical AI Milestones, 1942-2024
  • Table 2 : Comprehensive Analysis of MCP Server Providers, 2025
  • Table 3 : Strategic Developments by MCP Manufacturers, November 2024-October 2025
  • Table 4 : Key Strategic Investments in MCP Servers, April 2024-October 2025
  • Table 5 : Types of AI Technology, Primary Function, and Applications
  • Table 6 : Comparative Performance of RL-based Recommendation Engines, Global, 2025
  • Table 7 : AI Services Provided by IBM
  • Table 8 : Value of AI Implementation Across the BFSI Sector
  • Table 9 : AI Applications in Media and Entertainment
  • Table 10 : AI Applications in Agriculture
  • Table 11 : Phases and Milestones: The AI Adoption Roadmap
  • Table 12 : Agentic AI in BFSI
  • Table 13 : Agentic AI in Retail and eCommerce
  • Table 14 : Abbreviations Used in This Report

List of Figures

  • Figure 1 : Corporate Investments in AI, Global, 2019-2024
  • Figure 2 : Usage of Predictive Models Across Primary Inpatient EHR Vendors, 2024
  • Figure 3 : Number of Notable Units of AI Models, by Country, 2024
  • Figure 4 : Total Number of AI Laws Around the World, by Country, 2025
  • Figure 5 : Barriers to AI Adoption in Organizations, 2024
  • Figure 6 : Imports of AI-Directed Technology, U.S., November 2024-March 2025
  • Figure 7 : MCP Server Architecture
  • Figure 8 : Number of MCP Servers Across the World, by Quarter, November 2024-June 2025
  • Figure 9 : Integration State of AI Solutions, by Business Function, 2025
  • Figure 10 : U.S. Survey of GenAI Adoption at Work and at Home, as of August 2024
  • Figure 11 : Growth in U.S. Job Postings Requiring GenAI Skills, 2023 and 2024
  • Figure 12 : Percentage of AI Adoption Across Various Business Functions, 2025
  • Figure 13 : Strategic Importance of AI for Managed Service Providers' Growth, 2024
  • Figure 14 : Organizations Using AI and GenAI in at Least One Business Function, 2020-2024
  • Figure 15 : Number of AI Medical Devices Approved by the FDA, 2018-2023
  • Figure 16 : Organizations Adopting Responsible AI, by Region, 2024
  • Figure 17 : Survey of U.S. Officials on AI Policy Impacts on AI Benefits
  • Figure 18 : Share of Firms That Have Adopted AI, by Employee Size, U.S., 2024
  • Figure 19 : Responsible AI Papers by Region at Major AI Conferences, 2024
  • Figure 20 : AI Perception Breakdown: Corporate Views in Selected Latin American Countries
  • Figure 21 : Major Factors Impacting AI Adoption, 2025
  • Figure 22 : Global Perceptions of AI's Impact on Current Employment, 2024
  • Figure 23 : Rate of AI Adoption in Hospitals, Global, 2018-2025
  • Figure 24 : Distribution of Classroom Time Spent on AI Topics, by Grade Level, 2024