农业技术转型评估:发展、成就与未来展望(2010-2020年和2020-2030年)
市场调查报告书
商品编码
1617395

农业技术转型评估:发展、成就与未来展望(2010-2020年和2020-2030年)

Agriculture Technology Transition Assessment: Evaluating Developments, Achievements, and Future Prospects, 2010-2020 and 2020-2030

出版日期: | 出版商: BIS Research | 英文 131 Pages | 商品交期: 1-5个工作天内

价格

农业技术的引进彻底改变了作物生产、牲畜管理、水产养殖和林业。

在农作物生产中,精密农业工具可以提高产量并减少投入浪费。牲畜管理可以受益于自动监测系统,以改善牲畜健康和生产力。水产养殖利用先进的感测器和资料分析来实现高效的饲养和水质管理。透过遥感探测和地理资讯系统技术优化林业,以帮助实现永续森林管理。这些进步正在提高所有部门的生产力、资源效率和环境永续性。采用技术对于满足世界粮食需求和应对气候变迁和资源稀缺等挑战至关重要。

2010 年至 2020 年期间,作物管理软体发生了革命性的发展。 FMIS、GIS、遥感探测和物联网等技术已成为现代农业不可或缺的一部分,实现了精密农业和永续实践。随着这些技术的不断发展,我们希望进一步提高农业生产力,增强应对世界日益严峻的挑战的能力。

从2010年到2020年,精密农业取得了重大技术进步,彻底改变了作物生产。从早期采用 GPS 进行田间测绘到整合先进的农场管理系统,这些技术使农民能够优化投入使用、提高生产力并提高永续性。

从2016年到2020年,无线网路和物联网的整合实现了持续监控和资料收集。这些资料经过即时分析,可以根据感测器读数立即采取行动,以改善作物健康和产量。

农业技术转型评估审查了2010年至2020年和2020年至2030年的农业技术发展、成就和未来前景。该研究涵盖作物生产、畜牧业、水产养殖业和林业,并专注于先进农业技术的生产、开发、分配和维护。它评估了精密农业、牲畜管理系统、水产养殖监测和林业管理工具的创新如何改变了农业实践。

目录

执行摘要

第一章 历史回顾:2010-2020

  • 农作物生产的主要技术进展
    • 精密农业
    • 基因改造生物 (GMO) 和杂交种子
    • 自动化机械设备
    • 作物管理软体
  • 畜牧业技术进步
    • 动物健康监测系统
    • 基因工程与育种创新
    • 牲畜管理软体
  • 水产养殖技术的进步
    • 水产养殖监控系统
    • 育种和遗传学
    • 水质管理
  • 林业科技创新
    • 遥感探测和地理资讯系统
    • 永续森林管理
    • 木材切割设备

第二章 现况:2020-2030

  • 农作物生产技术发展
    • 精密农业的进展
    • 作物遗传学的创新
    • 整合物联网和人工智慧
  • 畜牧生产技术
    • 智慧动物健康监测
    • 精准畜牧业
    • 家畜遗传学进展
  • 水产养殖进步
    • 水产养殖中的物联网与人工智慧
    • 永续饲料和营养
    • 养殖技术创新
  • 林业科技趋势
    • 精准林业
    • 先进的收穫技术

第三章 比较分析:2010-2020年及2020-2030年

  • 农作物生产技术进步
    • 精密农业
    • 基因改造和杂交种子
    • 自动化机械设备
    • 作物管理软体
    • 整合物联网和人工智慧
  • 畜牧生产创新
    • 动物健康监测系统
    • 基因工程与育种创新
    • 牲畜管理软体
    • 智慧动物健康监测
    • 精准畜牧业
    • 家畜遗传学进展
  • 水产养殖的进步
    • 水产养殖监控系统
    • 育种和遗传学
    • 水质管理
    • 水产养殖中的物联网与人工智慧
    • 永续饲料和营养
    • 养殖技术创新
  • 林业科技的演变
    • 遥感探测和地理资讯系统
    • 永续森林管理
    • 木材切割设备
    • 精准林业

第 4 章 结果与影响:案例研究

  • 提高作物产量
  • 提高畜牧业生产力
  • 提高水产养殖效率
  • 永续森林管理

第五章挑战与机会

  • 技术采用的障碍
    • 农作物生产
    • 家畜
    • 水产养殖
    • 林业
  • 政府措施和影响
  • 投资金筹措趋势

第六章 建议与结论

第七章调查方法

Product Code: AGA2136SA

Agriculture Technology Transition Assessment

The agriculture technology transition assessment examines agricultural technologies' developments, achievements, and future prospects from 2010 to 2020 and 2020 to 2030. This study encompasses crop production, livestock, aquaculture, and forestry, focusing on the industry's production, development, distribution, and maintenance of advanced agricultural technologies. It evaluates how innovations in precision farming, livestock management systems, aquaculture monitoring, and forestry management tools have transformed agricultural practices. The assessment aims to provide a comprehensive overview of technological advancements, their impact on productivity and sustainability, and projections for future trends and opportunities in the agricultural sector.

Industrial Impact

Technology adoption in agriculture has revolutionized crop production, livestock management, aquaculture, and forestry. In crop production, precision farming tools enhance yields and reduce input wastage. Livestock management benefits from automated monitoring systems, improving animal health and productivity. Aquaculture utilizes advanced sensors and data analytics for efficient feeding and water quality management. Forestry operations are optimized with remote sensing and GIS technologies, aiding in sustainable forest management. These advancements lead to increased productivity, resource efficiency, and environmental sustainability across all sectors. Technology adoption is crucial for meeting global food demand and addressing challenges such as climate change and resource scarcity.

Developments in the Agriculture Technology Transition:

  • The period from 2010 to 2020 witnessed transformative developments in crop management software. Technologies such as FMIS, GIS, remote sensing, and IoT have become integral to modern agriculture, enabling precision farming and sustainable practices. As these technologies continue to evolve, they promise to enhance further agricultural productivity and resilience in the face of growing global challenges.
  • Between 2010 and 2020, precision agriculture witnessed remarkable technological advancements that significantly transformed crop production. From the early adoption of GPS for field mapping to integrating sophisticated farm management systems, these technologies have enabled farmers to optimize input use, enhance productivity, and improve sustainability.
  • In the period between 2016-2020, the integration of wireless networks and IoT enabled continuous monitoring and data collection. This data could be analyzed in real-time, allowing immediate action based on sensor readings, enhancing crop health and yield.

How can this report add value to an organization?

Innovation Strategy: This provides valuable insights into the methods and innovations shaping agriculture's shift toward technology-driven sustainability. By conducting a thorough agriculture technology transition assessment, stakeholders can evaluate the challenges and opportunities that come with adopting smart agriculture solutions. Such an assessment enables policymakers, agribusinesses, and farmers to understand the environmental, economic, and operational impacts of transitioning to technologies that support efficient resource use, reduce emissions, and enhance crop yields.

Growth/Marketing Strategy: The transition to advanced agriculture technology has led to developments in the sector, as key players utilize assessments to guide product innovation, market expansion, and strategic alliances. Companies have increasingly conducted thorough assessments of technology integration to meet sustainability goals, enhance efficiency, and support regulatory compliance. Partnerships, collaborations, and joint ventures with technology providers and research institutions enable firms to implement cutting-edge solutions, from precision farming and AI-driven analytics to automated machinery.

Competitive Strategy: The agriculture technology transition assessment provides an in-depth smart agriculture analysis, highlighting the unique challenges and opportunities in each area. This assessment offers a comprehensive comparative analysis of the technologies in the market. Stakeholders gain a clear perspective on the competitive landscape by evaluating factors such as infrastructure readiness, regulatory frameworks, and technology adoption rates. This enables agribusinesses, policymakers, and investors to identify strategic areas for growth, align with global sustainability goals, and make informed decisions in adapting to a rapidly evolving agricultural technology market.

Research Methodology

Primary Data Sources

The primary sources involve the smart agriculture industry experts and stakeholders such as platform developers and service providers. Respondents such as vice presidents, CEOs, marketing directors, and technology and innovation directors have been interviewed to verify this research study's qualitative and quantitative aspects.

The key data points taken from primary sources include:

  • validation and triangulation of all the numbers and graphs
  • understanding the competitive landscape of different technologies

Secondary Data Sources

This research study involves the usage of extensive secondary research, directories, company websites, and annual reports. It also makes use of databases, such as Hoovers, Bloomberg, Businessweek, and Factiva, to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global market. In addition to the aforementioned data sources, the study has been undertaken with the help of other data sources and websites, such as www.fao.org and www.worldbank.org.

Secondary research was done to obtain crucial information about the industry's value chain, revenue models, the market's monetary chain, the total pool of key players, and the current and potential use cases and applications.

The key data points taken from secondary research include:

  • qualitative insights into various aspects of the market, key trends, and emerging areas of innovation
  • quantitative data for mathematical and statistical calculations

Table of Contents

Executive Summary

Scope and Definition

1 Historical Overview: 2010-2020

  • 1.1 Major Technological Developments in Crop Production
    • 1.1.1 Precision Agriculture
      • 1.1.1.1 Global Positioning System (GPS)
      • 1.1.1.2 Variable Rate Technology (VRT)
      • 1.1.1.3 Soil and Crop Sensors
      • 1.1.1.4 Remote Sensing and Imagery
      • 1.1.1.5 Automated Machinery and Robots
      • 1.1.1.6 Integrated Farm Management Systems (IFMS)
    • 1.1.2 Genetically Modified Organisms (GMOs) and Hybrid Seeds
      • 1.1.2.1 Genetically Modified Organisms
        • 1.1.2.1.1 Technological Developments in GMOs, 2010-2020
          • 1.1.2.1.1.1 Herbicide-Resistant Crops:
          • 1.1.2.1.1.2 Insect-Resistant Crops:
          • 1.1.2.1.1.3 Drought-Tolerant Crops:
          • 1.1.2.1.1.4 Nutritionally Enhanced Crops:
          • 1.1.2.1.1.5 Virus-Resistant Crops:
      • 1.1.2.2 Hybrid Seeds
        • 1.1.2.2.1 Technological Developments in Hybrid Seeds, 2010-2020:
          • 1.1.2.2.1.1 High-Yielding Hybrid Varieties:
          • 1.1.2.2.1.2 Disease-Resistant Hybrids:
          • 1.1.2.2.1.3 Stress-Tolerant Hybrids:
          • 1.1.2.2.1.4 Improved Nutritional Quality:
          • 1.1.2.2.1.5 Short-Duration Hybrids:
    • 1.1.3 Automated Machinery and Equipment
      • 1.1.3.1 Technological Developments in Automated Machinery and Equipment, 2010-2020
        • 1.1.3.1.1 Automated Tractors
        • 1.1.3.1.2 Drones
        • 1.1.3.1.3 Harvesting Robots
        • 1.1.3.1.4 Seeding and Planting Robots
        • 1.1.3.1.5 Irrigation Systems
        • 1.1.3.1.6 Weeding Robots
        • 1.1.3.1.7 Spraying Drones
        • 1.1.3.1.8 Soil Health Monitoring Robots
        • 1.1.3.1.9 Automated Guided Vehicles (AGVs)
    • 1.1.4 Crop Management Software
      • 1.1.4.1 Technologies Within Crop Management Software, 2010-2020:
        • 1.1.4.1.1 Farm Management Information Systems (FMIS)
        • 1.1.4.1.2 Geographic Information Systems (GIS)
        • 1.1.4.1.3 Remote Sensing
        • 1.1.4.1.4 Variable Rate Technology (VRT)
        • 1.1.4.1.5 Decision Support Systems (DSS)
        • 1.1.4.1.6 Internet of Things (IoT)
        • 1.1.4.1.7 Cloud Computing
        • 1.1.4.1.8 Big Data Analytics
        • 1.1.4.1.9 Blockchain Technology
  • 1.2 Technological Advancements in Livestock Production
    • 1.2.1 Animal Health Monitoring Systems
      • 1.2.1.1 Technological Advancements in Livestock Production:
        • 1.2.1.1.1 Wearable Sensors
        • 1.2.1.1.2 Automated Milking Systems (AMS)
        • 1.2.1.1.3 Radio Frequency Identification (RFID)
        • 1.2.1.1.4 Drones and Aerial Imaging
        • 1.2.1.1.5 Internet of Things (IoT)
        • 1.2.1.1.6 Machine Learning and Predictive Analytics
    • 1.2.2 Genetic Engineering and Breeding Innovations
      • 1.2.2.1 CRISPR-Cas9 Gene Editing
      • 1.2.2.2 Marker-Assisted Selection (MAS)
      • 1.2.2.3 Genomic Selection
      • 1.2.2.4 Cloning and Somatic Cell Nuclear Transfer (SCNT)
      • 1.2.2.5 Embryo Transfer and In Vitro Fertilization (IVF)
      • 1.2.2.6 Artificial Insemination
    • 1.2.3 Livestock Management Software
      • 1.2.3.1 Automated Data Collection and Analysis
      • 1.2.3.2 Precision Feeding Systems
      • 1.2.3.3 Health Monitoring and Disease Detection
      • 1.2.3.4 Genetic and Breeding Management
      • 1.2.3.5 Farm Management Systems Integration
      • 1.2.3.6 Blockchain
  • 1.3 Progress in Aquaculture Technology
    • 1.3.1 Aquaculture Monitoring Systems
      • 1.3.1.1 Remote Sensing and Satellite Imaging
      • 1.3.1.2 Internet of Things (IoT) and Smart Sensors
      • 1.3.1.3 Biofloc Technology
    • 1.3.2 Breeding and Genetics
      • 1.3.2.1 Selective Breeding
      • 1.3.2.2 Genetic Engineering
      • 1.3.2.3 Genomic Selection
    • 1.3.3 Water Quality Management
      • 1.3.3.1 Sensor Technology
        • 1.3.3.1.1 Dissolved Oxygen Sensors
        • 1.3.3.1.2 pH and Temperature Sensors
        • 1.3.3.1.3 Multiparameter Probes
      • 1.3.3.2 Biofiltration Systems
        • 1.3.3.2.1 Biological Filters
        • 1.3.3.2.2 Constructed Wetlands
        • 1.3.3.2.3 Algal Turf Scrubbers
      • 1.3.3.3 Automated Water Quality Control Systems
        • 1.3.3.3.1 Automated Monitoring Systems
        • 1.3.3.3.2 Smart Feeding Systems
        • 1.3.3.3.3 AI and Machine Learning Algorithms
  • 1.4 Forestry Technology Innovations
    • 1.4.1 Remote Sensing and GIS
      • 1.4.1.1 Remote Sensing in Forestry
        • 1.4.1.1.1 High-Resolution Satellite Imagery
        • 1.4.1.1.2 Light Detection and Ranging (LiDAR)
        • 1.4.1.1.3 Hyperspectral Imaging
      • 1.4.1.2 GIS in Forestry
        • 1.4.1.2.1 Spatial Data Integration
        • 1.4.1.2.2 Real-Time Data Analysis
        • 1.4.1.2.3 Mobile GIS Applications
    • 1.4.2 Sustainable Forestry Practices
      • 1.4.2.1 Precision Forestry
      • 1.4.2.2 Sustainable Harvesting Techniques
    • 1.4.3 Timber Harvesting Equipment
      • 1.4.3.1 Harvester and Forwarder Automation
      • 1.4.3.2 Precision Forestry (GPS and GIS Integration)
      • 1.4.3.3 Sustainable Harvesting Practices

2 Current State: 2020-2030

  • 2.1 Technological Developments in Crop Production
    • 2.1.1 Advancements in Precision Agriculture
      • 2.1.1.1 Remote Sensing and Satellite Imaging
      • 2.1.1.2 Internet of Things (IoT) and Sensor Networks
      • 2.1.1.3 Drones and UAVs
      • 2.1.1.4 Precision Irrigation Systems
      • 2.1.1.5 Artificial Intelligence (AI) and Machine Learning (ML)
      • 2.1.1.6 Blockchain Technology
    • 2.1.2 Innovations in Crop Genetics
      • 2.1.2.1 CRISPR-Cas9 Gene Editing
      • 2.1.2.2 RNA Interference (RNAi)
      • 2.1.2.3 Genomic Selection
      • 2.1.2.4 Synthetic Biology
      • 2.1.2.5 Marker-Assisted Selection (MAS)
    • 2.1.3 Integration of IoT and AI
      • 2.1.3.1 Precision Farming
      • 2.1.3.2 Smart Irrigation Systems
      • 2.1.3.3 Pest and Disease Detection
      • 2.1.3.4 Soil Health Monitoring
      • 2.1.3.5 Autonomous Farming Machinery
      • 2.1.3.6 Predictive Analytics
  • 2.2 Livestock Production Technologies
    • 2.2.1 Smart Animal Health Monitoring
      • 2.2.1.1 Wearable Sensors
      • 2.2.1.2 Biosensors and Biotelemetry
      • 2.2.1.3 RFID and GPS Tracking
      • 2.2.1.4 Machine Learning and Artificial Intelligence
      • 2.2.1.5 Automated Health Management Systems
      • 2.2.1.6 Drone Technology
    • 2.2.2 Precision Livestock Farming
      • 2.2.2.1 Smart Sensors
      • 2.2.2.2 Wearable Devices
      • 2.2.2.3 Robotic Systems
      • 2.2.2.4 Automated Feeding Systems
      • 2.2.2.5 Genomic Tools
      • 2.2.2.6 Data Analytics and AI
    • 2.2.3 Advances in Livestock Genetics
      • 2.2.3.1 CRISPR-Cas9 Gene Editing
      • 2.2.3.2 Genomic Selection
      • 2.2.3.3 Embryo Transfer and In Vitro Fertilization (IVF)
      • 2.2.3.4 Marker-Assisted Selection (MAS)
      • 2.2.3.5 Epigenetic Modifications
      • 2.2.3.6 Whole-Genome Sequencing (WGS)
  • 2.3 Advances in Aquaculture
    • 2.3.1 IoT and AI in Aquaculture
      • 2.3.1.1 IoT-Based Monitoring Systems
      • 2.3.1.2 AI-Driven Data Analytics
      • 2.3.1.3 Robotics and Automation
      • 2.3.1.4 Blockchain for Supply Chain Transparency
      • 2.3.1.5 Virtual Reality (VR) and Augmented Reality (AR) for Training and Education
    • 2.3.2 Sustainable Feed and Nutrition
      • 2.3.2.1 Alternative Protein Sources
      • 2.3.2.2 Biofloc Technology
      • 2.3.2.3 Precision Nutrition
      • 2.3.2.4 Probiotics and Prebiotics
      • 2.3.2.5 Integrated Multi-Trophic Aquaculture (IMTA)
    • 2.3.3 Innovations in Breeding Techniques
      • 2.3.3.1 Genomic Selection and Marker-Assisted Selection (MAS)
      • 2.3.3.2 CRISPR-Cas9 and Gene Editing
      • 2.3.3.3 Synthetic Biology
      • 2.3.3.4 Epigenetic Modifications
      • 2.3.3.5 Integrated Multi-Trophic Aquaculture (IMTA) and Selective Breeding
  • 2.4 Forestry Technology Trends
    • 2.4.1 Precision Forestry
      • 2.4.1.1 Remote Sensing and GIS
      • 2.4.1.2 Drones
      • 2.4.1.3 AI and Machine Learning
      • 2.4.1.4 IoT and Sensor Networks
    • 2.4.2 Advanced Harvesting Technologies
      • 2.4.2.1 Automated Harvesting Machines
      • 2.4.2.2 Precision Forestry Technologies
      • 2.4.2.3 Sustainable Logging Practices
      • 2.4.2.4 Biomass Harvesting Technologies

3 Comparative Analysis: 2010-2020 vs. 2020-2030

  • 3.1 Technological Progress in Crop Production
    • 3.1.1 Precision Agriculture
    • 3.1.2 GMOs and Hybrid Seeds
    • 3.1.3 Automated Machinery and Equipment
    • 3.1.4 Crop Management Software
    • 3.1.5 Integration of IoT and AI
  • 3.2 Innovations in Livestock Production
    • 3.2.1 Animal Health Monitoring Systems
    • 3.2.2 Genetic Engineering and Breeding Innovations
    • 3.2.3 Livestock Management Software
    • 3.2.4 Smart Animal Health Monitoring
    • 3.2.5 Precision Livestock Farming
    • 3.2.6 Advances in Livestock Genetics
  • 3.3 Advancements in Aquaculture
    • 3.3.1 Aquaculture Monitoring Systems
    • 3.3.2 Breeding and Genetics
    • 3.3.3 Water Quality Management
    • 3.3.4 IoT and AI in Aquaculture
    • 3.3.5 Sustainable Feed and Nutrition
    • 3.3.6 Innovations in Breeding Techniques
  • 3.4 Evolution of Forestry Technology
    • 3.4.1 Remote Sensing and GIS
    • 3.4.2 Sustainable Forestry Practices
    • 3.4.3 Timber Harvesting Equipment
    • 3.4.4 Precision Forestry

4 Achievements and Impacts: Case Study

  • 4.1 Crop Yield Improvements
  • 4.2 Enhanced Livestock Productivity
  • 4.3 Aquaculture Efficiency Gains
  • 4.4 Sustainable Forestry Practices

5 Challenges and Opportunities

  • 5.1 Barriers to Technology Adoption
    • 5.1.1 Crop Production
    • 5.1.2 Livestock
    • 5.1.3 Aquaculture
    • 5.1.4 Forestry
  • 5.2 Government Initiatives and Impacts
  • 5.3 Investment and Funding Trends

6 Recommendation and Conclusion

  • 6.1 Recommendations
    • 6.1.1 Recommendation for Policymakers
    • 6.1.2 Recommendation for Technology Providers
    • 6.1.3 Recommendations for End Users

7 Research Methodology

  • 7.1 Data Sources
    • 7.1.1 Primary Data Sources
    • 7.1.2 Secondary Data Sources

List of Figures

  • Figure 1: Objectives of Technology Adoption in Agriculture
  • Figure 2: History of Agricultural Evolution
  • Figure 3: Major Technological Developments and Adoption in Agriculture Sectors, 2010-2020
  • Figure 4: Major Technological Developments (Ongoing and Expected) in Agriculture Sectors, 2020-2030
  • Figure 5: History of Agricultural Evolution
  • Figure 6: Issues Impacting the Adoption of Precision Agriculture
  • Figure 7: Adoption Rates of Precision Agriculture Technologies by U.S. Farmers for Corn in 2016 and Soybeans in 2018
  • Figure 8: Remote Monitoring of Grape Crops for Disease and Pest Management - Infosys
  • Figure 9: Automated Irrigation System Development - Krish Compusoft Services (KCS)
  • Figure 10: Global Area of GM Crops, 2000-2017, Million Hectare
  • Figure 11: Crop Species with More than Five Landraces Documented in CONECT-e
  • Figure 12: Agriculture Tractor Registrations in Europe (by Year), 2016-2023
  • Figure 13: Transforming Farm Management at MacField Farms with Conservis Technology
  • Figure 14: U.S. Broilers Production, 2002-2022
  • Figure 15: Flow Diagram of Animal Health Monitoring System
  • Figure 16: Evolution of Genetically Modified Livestock
  • Figure 17: Case Study: Livestock Management Software: AgriERP and Rombola Family Farms
  • Figure 18: Case Study: AquaTech Solutions and BlueWave Aquaculture
  • Figure 19: Case Study: Smart Aqua Systems and GreenWave Aquaculture
  • Figure 20: Process of Technology Adoption in Forestry
  • Figure 21: Components of Remote Sensing and GIS in Forestry
  • Figure 22: Contribution of Innovative Technologies in Sustainable Forestry
  • Figure 23: Adoption of Precision Agriculture in the U.S. Farms, 2022-2023
  • Figure 24: Global Agriculture Goals Achieved through Smart Farming
  • Figure 25: Comparison between Conventional Breeding and Genetic Engineering
  • Figure 26: Reduction of Input Resources - Zerynth S.p.A.
  • Figure 27: Enhancing Sustainability and Traceability in Hazelnut Production
  • Figure 28: U.S. Broilers Production, 2024-2030
  • Figure 29: Case Study: Smart Livestock Management With IoT Solutions
  • Figure 30: Remote Sensing and GIS in Precision Forestry: Arbonaut
  • Figure 31: Forest Management with Digital Twin Technology
  • Figure 32: Forestry Monitoring and Management Using Remote Sensing and GIS Technology
  • Figure 33: Roadmap in Forestry Technology Innovations
  • Figure 34: Case Study: Implementation of Smart Technologies in Forestry Production: Stora Enso
  • Figure 35: Crop Yield Improvements Case Study
  • Figure 36: Enhanced Livestock Productivity Case Study
  • Figure 37: Aquaculture Efficiency Gains Case Study
  • Figure 38: Sustainable Forestry Practices Case Study
  • Figure 39: Investments in Agriculture Technologies (by Year-on-Year), $Billion, 2019-2023
  • Figure 40: Agriculture Technology Transition Assesment (2010-2030): Research Methodology

List of Tables

  • Table 1: Key Technologies and Providers
  • Table 2: Development and Adoption of Precision Agriculture Technologies, 2010-2020
  • Table 3: Development and Adoption of GMOs and Hybrid Seeds, 2010-2020
  • Table 4: Development and Adoption of Automated Machinery and Equipment, 2010-2020
  • Table 5: Development and Adoption of Technologies in Crop Management Software, 2010-2020
  • Table 6: Key Technologies and Providers
  • Table 7: Key Livestock Management Providers
  • Table 8: Development and Adoption of Technologies in Animal Health Monitoring, 2010-2020
  • Table 9: Development and Adoption of Technologies in Genetic Engineering and Breeding Innovations, 2010-2020
  • Table 10: Development and Adoption of Technologies in Livestock Management Software, 2010-2020
  • Table 11: Development and Adoption of Technologies in Aquaculture Monitoring Systems, 2010-2020
  • Table 12: Development and Adoption of Technologies in Breeding and Genetics, 2010-2020
  • Table 13: Development and Adoption of Technologies in Water Quality Management, 2010-2020
  • Table 14: Key Technologies and Providers
  • Table 15: Key Agroforestry Technology Providers
  • Table 16: Development and Adoption of Technologies in Remote Sensing and GIS, 2010-2020
  • Table 17: Development and Adoption of Technologies in Sustainable Forestry Practices, 2010-2020
  • Table 18: Development and Adoption of Technologies in Sustainable Forestry Practices, 2010-2020
  • Table 19: Key Precision Agriculture Companies
  • Table 20: Expected Technological Developments and Advancements in Precision Agriculture, 2020-2030
  • Table 21: Expected Technological Developments and Innovations in Crop Genetics, 2020-2030
  • Table 22: Expected Technological Developments and Innovations in the Integration of IoT and AI, 2020-2030
  • Table 23: Expected Technological Developments and Innovations in Smart Animal Health Monitoring, 2020-2030
  • Table 24: Expected Technological Developments and Innovations in Precision Livestock Farming, 2020-2030
  • Table 25: Expected Technological Developments and Innovations in Advances in Livestock Genetics, 2020-2030
  • Table 26: Expected Technological Developments and Innovations in IoT and AI for Aquaculture, 2020-2030
  • Table 27: Expected Technological Developments and Innovations in Sustainable Feed and Nutrition, 2020-2030
  • Table 28: Expected Technological Developments and Innovations in Breeding Techniques, 2020-2030
  • Table 29: Expected Technological Developments and Innovations in Precision Forestry, 2020-2030
  • Table 30: Expected Technological Developments and Innovations in Precision Forestry, 2020-2030
  • Table 31: Technological Progress in Crop Production (2010-2030)
  • Table 32: Technological Progress in Livestock Production (2010-2030)
  • Table 33: Technological Progress in Livestock Production (2010-2030)
  • Table 34: Technological Progress in Livestock Production (2010-2030)
  • Table 35: Key Government Initiatives/Programs