封面
市场调查报告书
商品编码
1639041

全球高温 3D 列印塑胶市场规模研究,按类型(PEEK、PEI、PEKK 和 PPSU)、最终用途(汽车、航太与国防、电气与电子)和区域预测 2022-2032

Global High Temperature 3D Printing Plastics Market Size Study, by Type (PEEK, PEI, PEKK, and PPSU), End Use (Automotive, Aerospace & Defense, Electrical & Electronics) and Regional Forecasts 2022-2032

出版日期: | 出版商: Bizwit Research & Consulting LLP | 英文 285 Pages | 商品交期: 2-3个工作天内

价格
简介目录

全球高温 3D 列印塑胶市场预计将大幅成长,预计将从 2023 年的 7.9 亿美元增至 2032 年的 24.4 亿美元,预测期内复合年增长率高达 13.30%。高温 3D 列印塑胶已成为需要先进材料的行业的关键解决方案,这些材料能够承受极端的操作条件,同时提供卓越的性能和精度。

聚醚醚酮 (PEEK)、聚醚酰亚胺 (PEI)、聚醚酮酮 (PEKK) 和聚苯砜 (PPSU) 的日益普及凸显了市场对高性能工程塑胶的日益关注。这些材料因其卓越的热稳定性、机械强度和耐化学性而在航太、汽车和电子领域备受追捧。随着製造商越来越多地利用积层製造技术,这些高温塑胶正在实现轻量化、客製化和永续设计的创新解决方案。

挑战依然存在,包括高昂的材料成本和加工高温聚合物的复杂性。然而,3D 列印技术的进步,加上对坚固且可持续材料的需求不断增长,正在抵消这些障碍。开发具有成本效益的解决方案和整合回收聚合物的努力也为更永续的市场轨迹铺平了道路。

从地区来看,北美和欧洲因其完善的航太和汽车行业而占据市场主导地位,这些行业需要精密工程材料。同时,在快速工业化、电子产品需求不断增长以及中国、日本和韩国等国家对先进製造技术投资增加的推动下,亚太地区正成为主要的成长动力。

市场的详细细分和细分市场解释如下:

目录

第 1 章:全球高温 3D 列印塑胶市场执行摘要

  • 全球高温3D列印塑胶市场规模及预测(2022-2032)
  • 区域概要
  • 分部摘要
    • 按类型
    • 按最终用途
  • 主要趋势
  • 经济衰退的影响
  • 分析师推荐与结论

第 2 章:全球高温 3D 列印塑胶市场定义与研究假设

  • 研究目的
  • 市场定义
  • 研究假设
    • 包容与排除
    • 限制
    • 供给侧分析
      • 可用性
      • 基础设施
      • 监管环境
      • 市场竞争
      • 经济可行性(消费者的角度)
    • 需求面分析
      • 监理框架
      • 技术进步
      • 环境考虑
      • 消费者意识和接受度
  • 估算方法
  • 研究考虑的年份
  • 货币兑换率

第 3 章:全球高温 3D 列印塑胶市场动态

  • 市场驱动因素
    • 航太和汽车领域对高性能聚合物的需求不断增长
    • 采用积层製造实现轻量化和客製化
    • 强调永续材料和设计解决方案
  • 市场挑战
    • 材料和加工成本高
    • 处理高温聚合物的复杂性
  • 市场机会
    • 技术进步带来经济高效的解决方案
    • 回收和可生物降解聚合物的整合
    • 亚太地区新兴市场的高成长潜力

第 4 章:全球高温 3D 列印塑胶市场产业分析

  • 波特的五力模型
    • 供应商的议价能力
    • 买家的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争竞争
    • 波特五力模型的未来方法
    • 波特的五力影响分析
  • PESTEL分析
    • 政治的
    • 经济
    • 社会的
    • 技术性
    • 环境的
    • 合法的
  • 顶级投资机会
  • 最佳制胜策略
  • 颠覆性趋势
  • 产业专家视角
  • 分析师推荐与结论

第 5 章:全球高温 3D 列印塑胶市场规模与预测:按类型 - 2022-2032

  • 细分仪表板
  • 全球高温 3D 列印塑胶市场:类型收入趋势分析,2022 年和 2032 年(百万美元/十亿美元)
    • 窥视
    • 聚乙烯亚胺
    • 聚醚酮酮
    • 聚苯硫醚

第 6 章:全球高温 3D 列印塑胶市场规模与预测:依最终用途分类 - 2022-2032

  • 细分仪表板
  • 全球高温 3D 列印塑胶市场:2022 年和 2032 年最终用途收入趋势分析(百万美元/十亿美元)
    • 汽车
    • 航太与国防
    • 电气与电子

第 7 章:全球高温 3D 列印塑胶市场规模与预测:按地区 - 2022-2032

  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 西班牙
    • 义大利
    • 欧洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 中东和非洲其他地区

第 8 章:竞争情报

  • 重点企业SWOT分析
    • Arkema SA
    • Victrex plc
    • Solvay SA
  • 顶级市场策略
  • 公司简介
    • Arkema SA
      • 关键讯息
      • 概述
      • 财务(视数据可用性而定)
      • 产品概要
      • 市场策略
    • Victrex plc
    • Solvay SA
    • SABIC
    • Evonik Industries AG
    • BASF SE
    • DuPont de Nemours, Inc.
    • Oxford Performance Materials
    • Ensinger GmbH
    • Stratasys Ltd.
    • 3D Systems Corporation
    • Ultimaker BV
    • Markforged Inc.
    • CRP Technology Srl
    • Proto Labs, Inc.

第 9 章:研究过程

  • 研究过程
    • 资料探勘
    • 分析
    • 市场预测
    • 验证
    • 出版
  • 研究属性
简介目录

The Global High Temperature 3D Printing Plastics Market is poised to grow significantly, reaching an estimated USD 2.44 billion by 2032 from USD 0.79 billion in 2023, registering a robust CAGR of 13.30% over the forecast period. High-temperature 3D printing plastics have emerged as a critical solution for industries demanding advanced materials capable of withstanding extreme operating conditions while delivering superior performance and precision.

The rising adoption of polyetheretherketone (PEEK), polyetherimide (PEI), polyetherketoneketone (PEKK), and polyphenylsulfone (PPSU) highlights the market's growing focus on high-performance engineering plastics. These materials are highly sought after in the aerospace, automotive, and electronics sectors for their exceptional thermal stability, mechanical strength, and chemical resistance. With manufacturers increasingly leveraging additive manufacturing technologies, these high-temperature plastics are enabling innovative solutions in lightweighting, customization, and sustainable design.

Challenges persist, including high material costs and the complexity of processing high-temperature polymers. However, advancements in 3D printing technologies, coupled with increasing demand for robust and sustainable materials, are offsetting these hurdles. Efforts to develop cost-effective solutions and integrate recycled polymers are also paving the way for a more sustainable market trajectory.

Regionally, North America and Europe dominate the market due to their well-established aerospace and automotive sectors, which demand precision-engineered materials. Meanwhile, the Asia-Pacific region is emerging as a key growth driver, propelled by rapid industrialization, burgeoning demand for electronics, and increased investments in advanced manufacturing technologies across countries such as China, Japan, and South Korea.

Major market players included in this report are:

  • Arkema S.A.
  • Victrex plc
  • Solvay S.A.
  • SABIC
  • Evonik Industries AG
  • BASF SE
  • DuPont de Nemours, Inc.
  • Oxford Performance Materials
  • Ensinger GmbH
  • Stratasys Ltd.
  • 3D Systems Corporation
  • Ultimaker BV
  • Markforged Inc.
  • CRP Technology Srl
  • Proto Labs, Inc.

The detailed segments and sub-segments of the market are explained below:

By Type:

  • PEEK
  • PEI
  • PEKK
  • PPSU

By End Use:

  • Automotive
  • Aerospace & Defense
  • Electrical & Electronics

By Region:

North America:

  • U.S.
  • Canada

Europe:

  • UK
  • Germany
  • France
  • Spain
  • Italy
  • Rest of Europe

Asia-Pacific:

  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Rest of Asia-Pacific

Latin America:

  • Brazil
  • Mexico
  • Rest of Latin America

Middle East & Africa:

  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Years considered for the study are as follows:

  • Historical Year: 2022
  • Base Year: 2023
  • Forecast Period: 2024 to 2032

Key Takeaways:

  • Comprehensive market estimates and forecasts over a 10-year period.
  • Insightful analysis of regional and segment-specific trends.
  • Examination of competitive strategies and market positioning of key players.
  • Recommendations for stakeholders to leverage emerging opportunities effectively.
  • In-depth understanding of market dynamics, including drivers, challenges, and opportunities.

Table of Contents

Chapter 1. Global High Temperature 3D Printing Plastics Market Executive Summary

  • 1.1. Global High Temperature 3D Printing Plastics Market Size & Forecast (2022-2032)
  • 1.2. Regional Summary
  • 1.3. Segmental Summary
    • 1.3.1. By Type
    • 1.3.2. By End Use
  • 1.4. Key Trends
  • 1.5. Recession Impact
  • 1.6. Analyst Recommendation & Conclusion

Chapter 2. Global High Temperature 3D Printing Plastics Market Definition and Research Assumptions

  • 2.1. Research Objective
  • 2.2. Market Definition
  • 2.3. Research Assumptions
    • 2.3.1. Inclusion & Exclusion
    • 2.3.2. Limitations
    • 2.3.3. Supply Side Analysis
      • 2.3.3.1. Availability
      • 2.3.3.2. Infrastructure
      • 2.3.3.3. Regulatory Environment
      • 2.3.3.4. Market Competition
      • 2.3.3.5. Economic Viability (Consumer's Perspective)
    • 2.3.4. Demand Side Analysis
      • 2.3.4.1. Regulatory Frameworks
      • 2.3.4.2. Technological Advancements
      • 2.3.4.3. Environmental Considerations
      • 2.3.4.4. Consumer Awareness & Acceptance
  • 2.4. Estimation Methodology
  • 2.5. Years Considered for the Study
  • 2.6. Currency Conversion Rates

Chapter 3. Global High Temperature 3D Printing Plastics Market Dynamics

  • 3.1. Market Drivers
    • 3.1.1. Growing Demand for High-Performance Polymers in Aerospace and Automotive
    • 3.1.2. Adoption of Additive Manufacturing for Lightweight and Customization
    • 3.1.3. Emphasis on Sustainable Materials and Design Solutions
  • 3.2. Market Challenges
    • 3.2.1. High Material and Processing Costs
    • 3.2.2. Complexity in Handling High-Temperature Polymers
  • 3.3. Market Opportunities
    • 3.3.1. Technological Advancements for Cost-Effective Solutions
    • 3.3.2. Integration of Recycled and Biodegradable Polymers
    • 3.3.3. High Growth Potential in Emerging APAC Markets

Chapter 4. Global High Temperature 3D Printing Plastics Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
    • 4.1.6. Futuristic Approach to Porter's 5 Force Model
    • 4.1.7. Porter's 5 Force Impact Analysis
  • 4.2. PESTEL Analysis
    • 4.2.1. Political
    • 4.2.2. Economical
    • 4.2.3. Social
    • 4.2.4. Technological
    • 4.2.5. Environmental
    • 4.2.6. Legal
  • 4.3. Top Investment Opportunity
  • 4.4. Top Winning Strategies
  • 4.5. Disruptive Trends
  • 4.6. Industry Expert Perspective
  • 4.7. Analyst Recommendation & Conclusion

Chapter 5. Global High Temperature 3D Printing Plastics Market Size & Forecasts by Type 2022-2032

  • 5.1. Segment Dashboard
  • 5.2. Global High Temperature 3D Printing Plastics Market: Type Revenue Trend Analysis, 2022 & 2032 (USD Million/Billion)
    • 5.2.1. PEEK
    • 5.2.2. PEI
    • 5.2.3. PEKK
    • 5.2.4. PPSU

Chapter 6. Global High Temperature 3D Printing Plastics Market Size & Forecasts by End Use 2022-2032

  • 6.1. Segment Dashboard
  • 6.2. Global High Temperature 3D Printing Plastics Market: End Use Revenue Trend Analysis, 2022 & 2032 (USD Million/Billion)
    • 6.2.1. Automotive
    • 6.2.2. Aerospace & Defense
    • 6.2.3. Electrical & Electronics

Chapter 7. Global High Temperature 3D Printing Plastics Market Size & Forecasts by Region 2022-2032

  • 7.1. North America High Temperature 3D Printing Plastics Market
    • 7.1.1. U.S. High Temperature 3D Printing Plastics Market
      • 7.1.1.1. Type breakdown size & forecasts, 2022-2032
      • 7.1.1.2. End Use breakdown size & forecasts, 2022-2032
    • 7.1.2. Canada High Temperature 3D Printing Plastics Market
      • 7.1.2.1. Type breakdown size & forecasts, 2022-2032
      • 7.1.2.2. End Use breakdown size & forecasts, 2022-2032
  • 7.2. Europe High Temperature 3D Printing Plastics Market
    • 7.2.1. UK High Temperature 3D Printing Plastics Market
    • 7.2.2. Germany High Temperature 3D Printing Plastics Market
    • 7.2.3. France High Temperature 3D Printing Plastics Market
    • 7.2.4. Spain High Temperature 3D Printing Plastics Market
    • 7.2.5. Italy High Temperature 3D Printing Plastics Market
    • 7.2.6. Rest of Europe High Temperature 3D Printing Plastics Market
  • 7.3. Asia-Pacific High Temperature 3D Printing Plastics Market
    • 7.3.1. China High Temperature 3D Printing Plastics Market
    • 7.3.2. India High Temperature 3D Printing Plastics Market
    • 7.3.3. Japan High Temperature 3D Printing Plastics Market
    • 7.3.4. Australia High Temperature 3D Printing Plastics Market
    • 7.3.5. South Korea High Temperature 3D Printing Plastics Market
    • 7.3.6. Rest of Asia-Pacific High Temperature 3D Printing Plastics Market
  • 7.4. Latin America High Temperature 3D Printing Plastics Market
    • 7.4.1. Brazil High Temperature 3D Printing Plastics Market
    • 7.4.2. Mexico High Temperature 3D Printing Plastics Market
    • 7.4.3. Rest of Latin America High Temperature 3D Printing Plastics Market
  • 7.5. Middle East & Africa High Temperature 3D Printing Plastics Market
    • 7.5.1. Saudi Arabia High Temperature 3D Printing Plastics Market
    • 7.5.2. South Africa High Temperature 3D Printing Plastics Market
    • 7.5.3. Rest of Middle East & Africa High Temperature 3D Printing Plastics Market

Chapter 8. Competitive Intelligence

  • 8.1. Key Company SWOT Analysis
    • 8.1.1. Arkema S.A.
    • 8.1.2. Victrex plc
    • 8.1.3. Solvay S.A.
  • 8.2. Top Market Strategies
  • 8.3. Company Profiles
    • 8.3.1. Arkema S.A.
      • 8.3.1.1. Key Information
      • 8.3.1.2. Overview
      • 8.3.1.3. Financial (Subject to Data Availability)
      • 8.3.1.4. Product Summary
      • 8.3.1.5. Market Strategies
    • 8.3.2. Victrex plc
    • 8.3.3. Solvay S.A.
    • 8.3.4. SABIC
    • 8.3.5. Evonik Industries AG
    • 8.3.6. BASF SE
    • 8.3.7. DuPont de Nemours, Inc.
    • 8.3.8. Oxford Performance Materials
    • 8.3.9. Ensinger GmbH
    • 8.3.10. Stratasys Ltd.
    • 8.3.11. 3D Systems Corporation
    • 8.3.12. Ultimaker BV
    • 8.3.13. Markforged Inc.
    • 8.3.14. CRP Technology Srl
    • 8.3.15. Proto Labs, Inc.

Chapter 9. Research Process

  • 9.1. Research Process
    • 9.1.1. Data Mining
    • 9.1.2. Analysis
    • 9.1.3. Market Estimation
    • 9.1.4. Validation
    • 9.1.5. Publishing
  • 9.2. Research Attributes