全球电液伺服阀市场 - 2023-2030
市场调查报告书
商品编码
1347956

全球电液伺服阀市场 - 2023-2030

Global Electro Hydraulic Servo Valve Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 240 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

概述

全球电液伺服阀市场于2022年达到18亿美元,预计到2030年将达到31亿美元,2023-2030年预测期间复合年增长率为4.2%。飞机和导弹系统需要对飞行控制面和起落架等各种功能进行精确控制,这有助于增加对电液伺服阀的需求。

随着工业对自动化和机器人技术需求的不断增长,对电液伺服阀的需求也随之增加。电液伺服阀为装配线、机械臂和其他自动化流程提供控制。航空航天和国防部门需要针对导弹、无人机和飞机的高质量控制解决方案。製造、金属加工和塑料加工都受益于电液伺服阀的精确性和快速响应。

预计在 2023 年至 2030 年预测期内,北美将占据全球市场约 1/4 的份额。由于航空和飞机工业的快速增长,北美是全球电液伺服阀市场的增长地区之一。该地区的主要参与者,例如专注于电液伺服阀的新产品发布。

动力学

在石油、天然气和采矿业中的应用不断增加

电液伺服阀由于能够提供精确的控制和操作的准确性,在石油、天然气和采矿行业中的应用越来越多。电液伺服阀在钻机中用于控制各种液压功能,例如管道处理系统、钻头定位和液压千斤顶。电液伺服阀的精确控制有助于提高安全性和钻井效率。

石油、天然气和采矿业的快速增长有助于推动预测期内的市场增长。根据印度品牌资产基金会IBEF提供的数据,到2045年,印度的石油需求预计将增长两倍,达到每天1100万桶。到2029-30年,印度的柴油需求预计将翻一番,达到163吨。石油和采矿需求的增加有助于推动电液伺服阀的市场增长。

增加飞机工业应用

喷嘴挡板电液伺服阀由于其在液压系统中的快速响应和精确控制,其工业应用不断增加。航空航天和国防等各个行业。电液伺服阀 (EHSV) 在飞机工业的各种应用中发挥着关键作用,特别是在需要精确和快速调节的控制系统中。

主要关键参与者增加产品推出有助于推动预测期内的细分市场增长。例如,霍尼韦尔针对飞机工业推出了电液伺服阀EHSV。它用于 CFM56-7 项目的 737 飞机。电液伺服阀应用于F15/F16、777、Falcon、F22、F18E&F、F22、Grippen等各类飞机。

阀门中使用的过滤器的污染

这些污染物会对电液伺服阀和整个液压系统的效率、性能和可靠性产生负面影响。液压系统中的污染物,例如维护和製造过程中引入的污垢、金属屑、碎片和污染物。污染还来自液压油在一段时间内的降解。

电液伺服阀中的污染物会导致阀门故障和部件磨损。它还增加了维护频率和系统故障。电液伺服阀中的污染物会扰乱精确的流量控制,从而对电液伺服阀市场的增长产生负面影响。

产品成本高

电液伺服阀由于精度高、响应时间快等多种因素而具有较高的成本,同时由于采用优质材料和精密製造技术有助于提高其可靠性和耐用性。与其他组件相比,各个行业对电液伺服阀的需求较低,导致产量较低。

组装电液伺服阀既复杂又费力。电液伺服阀的一些工业应用需要定制。航空航天、国防等行业需要严格的认证,认证成本较高。例如,LEO Engineers 是一家高品质电液伺服阀的製造商和供应商。一件的价格为 1509.1 美元。

目录

第 1 章:方法和范围

  • 研究方法论
  • 报告的研究目的和范围

第 2 章:定义和概述

第 3 章:执行摘要

  • 阀门片段
  • 阶段片段
  • LPM 的片段
  • 控製片段
  • 按驱动片段
  • 按压力范围分類的片段
  • 按应用程序片段
  • 按地区分類的片段

第 4 章:动力学

  • 影响因素
    • 司机
    • 在石油、天然气和采矿业中的应用不断增加
    • 增加飞机工业应用
    • 限制
    • 阀门中使用的过滤器的污染
    • 产品成本高
    • 机会
    • 影响分析

第 5 章:行业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

  • COVID-19 分析
    • 新冠疫情爆发前的情景
    • 新冠疫情期间的情景
    • 新冠疫情后的情景
  • COVID-19 期间的定价动态
  • 供需谱
  • 疫情期间政府与市场相关的倡议
  • 製造商战略倡议
  • 结论

第 7 章:通过阀门

  • 喷嘴挡板阀
  • 喷射管伺服阀
  • 偏转喷射器
  • 其他的

第 8 章:按阶段

  • 单级伺服阀
  • 两级伺服阀
  • 三级伺服阀

第 9 章:通过 LPM

  • 低于 20 LPM
  • 超过 20 LPM

第10章:通过控制

  • 开环控制
  • 闭环控制

第 11 章:通过驱动

  • 液压驱动
  • 电液驱动

第 12 章:按压力范围

  • 低压
  • 高压力

第 13 章:按应用

  • 航太
  • 电力行业
  • 钢铁工业
  • 化学工业
  • 石油和天然气
  • 海洋工业
  • 建造业
  • 卫生保健
  • 其他的

第 14 章:按地区

  • 北美
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 俄罗斯
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳大利亚
    • 亚太其他地区
  • 中东和非洲

第15章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 16 章:公司简介

    • 公司简介
    • 产品组合和描述
    • 财务概览
    • 最近的发展
  • 派克汉尼汾公司
  • 伊顿
  • 伍德沃德公司
  • 霍尼韦尔国际公司
  • 博世力士乐股份公司
  • 福伊特有限公司
  • 星液压有限公司
  • 艾默生电气公司
  • 海德福斯公司

第 17 章:附录

简介目录
Product Code: ICT6845

Overview

Global Electro Hydraulic Servo Valve Market reached US$ 1.8 billion in 2022 and is expected to reach US$ 3.1 billion by 2030, growing with a CAGR of 4.2% during the forecast period 2023-2030. Aircraft and missile systems require precise control for various functions like flight control surfaces and landing gear that helps to boost demand for the electro-hydraulic servo valve.

As the growing industrial demand for automation and robotics increases demand for the electro hydraulic servo valve also increases. Electro-Hydraulic Servo Valves provide the control for assembly lines, robotic arms and other automated processes. The aerospace and defense sectors need high-quality control solutions for missiles, drones and aircrafts. Manufacturing, metalworking and plastics processing have benefited from the precision and quick response of electro hydraulic servo valves.

North America is expected to hold a share of around 1/4th of the global market during the forecast period 2023-2030. North America is among the growing regions in the global electro hydraulic servo valve market due to the rapid growth in the aviation and aircraft industry. Major key players in the region such as focusing on the new product launches of electro hydraulic servo valves.

Dynamics

Rising Applications in the Oil, Gas and Mining

Electro-hydraulic servo valves have increasing applications in the oil, gas and mining industries due to their ability to provide precise control and accuracy in operations. Electro-hydraulic servo Valves are utilized in drilling rigs to control various hydraulic functions such as pipe handling systems, positioning of drill bits and hydraulic jacks. Precise control of the electro-hydraulic servo valve helps to boost safety and drilling efficiency.

The rapid growth in the oil, gas and mining industries helps to boost market growth over the forecast period. According to the data given by IBEF, India brand equity foundation, oil demand in India is projected to show 2x growth to reach 11 million barrels per day by 2045. Diesel demand in India is expected to double to 163 MT by 2029-30. The increased demand for oil and mining helps to boost the market growth of electro-hydraulic servo valves.

Increasing Aircraft Industry Applications

Increasing industrial applications of the nozzle flapper electro-hydraulic servo valves due to its fast response and precise control in hydraulic systems. Various industries such as aerospace and defense. Electro-hydraulic servo valves (EHSV) play a critical role in various applications within the aircraft industry, particularly in control systems that require precise and rapid adjustments.

An increase in product launches by major key players helps to boost segment growth over the forecast period. For instance, Honeywell launched electro-hydraulic servo valves EHSV for the aircraft industry. It is used in 737 aircraft of the program CFM56-7. Electro-hydraulic servo valves are used in various types of aircraft such as F15/F16, 777, Falcon, F22, F18E&F, F22 and Grippen among others.

Contamination of Filters Used in the Valves

The contaminations negatively impact the efficiency, performance and reliability of the electro hydraulic servo valve and the entire hydraulic system. Contaminants in the hydraulic systems such as dirt, metal shavings, debris and contaminants introduced during the maintenance and manufacturing process. Contaminations also come from the degradation of hydraulic fluid over the period of time.

Contaminants in the electro hydraulic servo valve cause valve malfunctions and wear and tear on components. It also increased maintainance frequency and system failures. Contaminants in the electro hydraulic servo valve disrupt the precise flow control which negatively impacted the electro hydraulic servo valve market growth.

High Product Cost

The electro-hydraulic servo valve has a high cost owing to various factors like high precision and rapid response time and also due to the use of high-quality materials and precise manufacturing techniques that assists to improve their reliability and durability. In various industries demand for the electro hydraulic servo valve is low compared to other components leading to lower production volumes.

Assembling electro-hydraulic servo valves is complex and labor-intensive. Some industrial applications of electro hydraulic servo valves required customization. Industries such as aerospace and defense require strict certification which needs high cost for the certification. For instance, LEO Engineers is a manufacturer and supplier of high-quality electro hydraulic servo valves. It has a cost of US$ 1509.1 for one piece.

Segment Analysis

The global electro-hydraulic servo valve market is segmented based on valve, stage, LPM, control, actuation, pressure range, application and region.

Increasing Applications of the the Nozzle Flapper Valves

The nozzle flapper valves segment is expected to hold a share of around 1/3th of the global market during the forecast period 2023-2030. The Nozzle Flapper Valves (NFVs) segment holds a major share of the global diamond art printing market and countries like U.S., Canada, Germany and UK have shown the highest growth in the market. Rising industrial applications of the nozzle flapper valves (NFVs) also help to boost market growth over the forecast period.

Furthermore, the rapid growth in the aviation industry also helps to boost demand for the Nozzle Flapper Valves (NFVs). An increase in the adoption of nozzle flapper valves (NFVs) in the aviation industry helps boost the market growth. For instance, according to the data given by Uniting Aviation, a United Nations specialized agency estimation by 2030, the air transport industry will contribute 15.5 million in direct job and US$ 1.5 trillion of GDP to the world economy.

Geographical Penetration

Growing Aviation And Craft Industry in North America

North America electro hydraulic servo valve market has accounted around 1/4th market share in 2022 due to the increase in the number of manufacturers in the region. Major key players in the region such as Moog Inc., Parker Hannifin Corporation, Eaton Corporation and Honeywell International Inc. follow a merger and acquisition strategy to expand their business. Some key players launched new products in the market.

For instance, Parker Hannifin Corporation, a U.S. based company offers various types of electro hydraulic servo valves such as SE05, SE10 and SE 15 series. U.S. has the most innovative aircraft and defense companies such as Northrop Grumman, General Dynamics, Raytheon Technologies and Harris Corporation. The companies are adopting electro hydraulic servo valves due to their its quality functionality.

The aerospace industry in North America growing rapidly and have been major users of the electro hydraulic servo valve. Also, the craft industry of U.S. has shown a major contribution to the global electro hydraulic servo valve. According to the CraftyThinking blog, the crafting industry is projected to be worth around US$ 28.3 million globally, with U.S. market accounting for about US$ 17.1 million.

COVID-19 Impact Analysis

The COVID-19 pandemic had negative impact on the electro hydraulic servo valve as it has applications in the various industries worldwide. Due to the lockdown, there is closure of factories and transportation restrictions. Due to this delay in the deliveries of electro hydraulic servo valve.

The global supply chain experienced disruptions due to lockdowns. Some of the major key players of the electro hydraulic servo valve were facing transportation challenges. It led to delays in the production and delivery of electro hydraulic servo valve supplies. A decrease in the business activities and economic uncertainties in various sectors led to a decrease in the demand of industrial equipment's such as electro hydraulic servo valve.

Manufacturing facilities of the electro hydraulic servo valve is closed due to the government safety and health regulations this is negatively impacted the market growth of the electro hydraulic servo valve. Aerospace and automotive industries have major applications of electro hydraulic servo valves that faced challenges due to the reduction of travel and change in consumer behavior.

Russia-Ukraine War Impact Analysis

The ongoing conflict affected industrial growth due to the government's strict regulations due to safety concerns. The supply chain disruption decreased the demand for electro hydraulic servo valves. Geopolitical conflicts have effects on the global economy including various factors such as fluctuations in commodity prices and supply chain disruptions. The factors directly affected the various industries that use electro-hydraulic servo valves.

Geopolitical tensions affected the currency fluctuations and exchange rate that impacted on the cost of imported products such as electro hydraulic servo valve. The ongoing conflict can create economic instability in the region. Uncertainty and disruptions in trade and commerce can impact consumer confidence and purchasing power.

As a result, individuals may prioritize essential needs over non-essential purchases like electro hydraulic servo valves leading to a potential decline in demand. Furthermore, the Russia-Ukraine war affected the disruption in the import and export of the materials like electro hydraulic servo valves. It impacted the supply chain of the electro hydraulic servo valve.

By Valve

  • Nozzle Flapper Valve
  • Jet Pipe Servo Valve
  • Deflector Jet
  • Others

By Stage

  • Single Stage Servo Valve
  • Two Stage Servo Valve
  • Three Stage Servo Valve

By LPM

  • Less Than 20 LPM
  • More Than 20 LPM

By Control

  • Open-loop control
  • Closed-loop control

By Actuation

  • Hydraulic actuation
  • Electro-hydraulic actuation

By Pressure Range

  • Low-pressure
  • High-pressure

By Application

  • Aerospace
  • Power Industry
  • Steel Industry
  • Chemical Industry
  • Oil & Gas
  • Construction Industry
  • Healthcare
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On September 12, 2022, Moog Inc., an American-based designer and manufacturer of electric, electro-hydraulic and hydraulic motion, controls and systems launched X700 Series Servo Cartridge Valves in the market. It has applications in the die-casting, sheet forming, metal and presses. It has operating pressure of 420 bar (6,000 psi).
  • On June 06, 2022, Voith, a global technology company acquired ARGO-HYTOS Group. ARGO-HYTOS developed and produced various components for hydraulics and system solutions. Voith acquired 79.5% of the ARGO-HYTOS.
  • On February 20, 2023, HydraForce, a global manufacturer of hydraulic valves and manifolds is exhibited at the CONEXPO-CON/AGG 2023 show. HydraForce booth, S80207 is collaborated with Zone showcasing for the demonstration of software offerings.

Competitive Landscape

The major global players include: Moog Inc., Parker Hannifin Corporation, Eaton Corporation, Woodward Inc., Honeywell International Inc., Bosch Rexroth AG, Curtiss-Wright Corporation, Dynamic Fluid Components Inc., Emerson Electric Co. and HydraForce Inc.

Why Purchase the Report?

  • To visualize the global electro-hydraulic servo valve market segmentation based on valve, stage, LPM, control, actuation, pressure range, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of electro-hydraulic servo valve market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global electro-hydraulic servo valve market report would provide approximately 93 tables, 99 figures and 240 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Valve
  • 3.2. Snippet by Stage
  • 3.3. Snippet by LPM
  • 3.4. Snippet by Control
  • 3.5. Snippet by Actuation
  • 3.6. Snippet by Pressure Range
  • 3.7. Snippet by Application
  • 3.8. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
    • 4.1.2. Rising Applications in the Oil, Gas and Mining
    • 4.1.3. Increasing Aircraft Industry Applications
    • 4.1.4. Restraints
    • 4.1.5. Contamination of Filters Used in the Valves
    • 4.1.6. High Product Cost
    • 4.1.7. Opportunity
    • 4.1.8. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During the Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Valve

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Valve
    • 7.1.2. Market Attractiveness Index, By Valve
  • 7.2. Nozzle Flapper Valve *
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Jet Pipe Servo Valve
  • 7.4. Deflector Jet
  • 7.5. Others

8. By Stage

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Stage
    • 8.1.2. Market Attractiveness Index, By Stage
  • 8.2. Single Stage Servo Valve*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Two Stage Servo Valve
  • 8.4. Three Stage Servo Valve

9. By LPM

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By LPM
    • 9.1.2. Market Attractiveness Index, By LPM
  • 9.2. Less Than 20 LPM*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. More Than 20 LPM

10. By Control

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Control
    • 10.1.2. Market Attractiveness Index, By Control
  • 10.2. Open-loop control *
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Closed-loop control

11. By Actuation

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Actuation
    • 11.1.2. Market Attractiveness Index, By Actuation
  • 11.2. Hydraulic Actuation*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Electro-hydraulic Actuation

12. By Pressure Range

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pressure Range
    • 12.1.2. Market Attractiveness Index, By Pressure Range
  • 12.2. Low-Pressure *
    • 12.2.1. Introduction
    • 12.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 12.3. High-Pressure

13. By Application

  • 13.1. Introduction
    • 13.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 13.1.2. Market Attractiveness Index, By Application
  • 13.2. Aerospace*
    • 13.2.1. Introduction
    • 13.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 13.3. Power Industry
  • 13.4. Steel Industry
  • 13.5. Chemical Industry
  • 13.6. Oil & Gas
  • 13.7. Marine Industry
  • 13.8. Construction Industry
  • 13.9. Healthcare
  • 13.10. Others

14. By Region

  • 14.1. Introduction
    • 14.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 14.1.2. Market Attractiveness Index, By Region
  • 14.2. North America
    • 14.2.1. Introduction
    • 14.2.2. Key Region-Specific Dynamics
    • 14.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Valve
    • 14.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Stage
    • 14.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By LPM
    • 14.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Control
    • 14.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Actuation
    • 14.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pressure Range
    • 14.2.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 14.2.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 14.2.10.1. U.S.
      • 14.2.10.2. Canada
      • 14.2.10.3. Mexico
  • 14.3. Europe
    • 14.3.1. Introduction
    • 14.3.2. Key Region-Specific Dynamics
    • 14.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Valve
    • 14.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Stage
    • 14.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By LPM
    • 14.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Control
    • 14.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Actuation
    • 14.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pressure Range
    • 14.3.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 14.3.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 14.3.10.1. Germany
      • 14.3.10.2. UK
      • 14.3.10.3. France
      • 14.3.10.4. Italy
      • 14.3.10.5. Russia
      • 14.3.10.6. Rest of Europe
  • 14.4. South America
    • 14.4.1. Introduction
    • 14.4.2. Key Region-Specific Dynamics
    • 14.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Valve
    • 14.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Stage
    • 14.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By LPM
    • 14.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Control
    • 14.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Actuation
    • 14.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pressure Range
    • 14.4.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 14.4.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 14.4.10.1. Brazil
      • 14.4.10.2. Argentina
      • 14.4.10.3. Rest of South America
  • 14.5. Asia-Pacific
    • 14.5.1. Introduction
    • 14.5.2. Key Region-Specific Dynamics
    • 14.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Valve
    • 14.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Stage
    • 14.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By LPM
    • 14.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Control
    • 14.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Actuation
    • 14.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pressure Range
    • 14.5.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 14.5.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 14.5.10.1. China
      • 14.5.10.2. India
      • 14.5.10.3. Japan
      • 14.5.10.4. Australia
      • 14.5.10.5. Rest of Asia-Pacific
  • 14.6. Middle East and Africa
    • 14.6.1. Introduction
    • 14.6.2. Key Region-Specific Dynamics
    • 14.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Valve
    • 14.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Stage
    • 14.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By LPM
    • 14.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Control
    • 14.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Actuation
    • 14.6.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pressure Range
    • 14.6.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

15. Competitive Landscape

  • 15.1. Competitive Scenario
  • 15.2. Market Positioning/Share Analysis
  • 15.3. Mergers and Acquisitions Analysis

16. Company Profiles

    • 16.1.1. Company Overview
    • 16.1.2. Product Portfolio and Description
    • 16.1.3. Financial Overview
    • 16.1.4. Recent Developments
  • 16.2. Parker Hannifin Corporation
  • 16.3. Eaton
  • 16.4. Woodward Inc.
  • 16.5. Honeywell International Inc
  • 16.6. Bosch Rexroth AG
  • 16.7. Voith GmbH & Co. KGaA
  • 16.8. Star Hydraulics Limited
  • 16.9. Emerson Electric Co
  • 16.10. HydraForce Inc.

LIST NOT EXHAUSTIVE

17. Appendix

  • 17.1. About Us and Services
  • 17.2. Contact Us