全球铁路数位化市场 - 2023-2030
市场调查报告书
商品编码
1360139

全球铁路数位化市场 - 2023-2030

Global Rail Digitalization Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 182 Pages | 商品交期: 约2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

概述 :

2022年,全球铁路数位化市场规模达617亿美元,预计2030年将达到1,188亿美元,2023-2030年预测期间复合年增长率为8.7%。

数位化简化了铁路运营,使其更有效率且更具成本效益,其中包括更好的调度、预测性维护和优化的路线规划。感测器、人工智慧和物联网等数位技术可以透过检测和预防事故、监控轨道状况并确保遵守安全法规来提高安全性。数位化可以透过线上预订、即时更新列车状态和车载 Wi-Fi 等功能来增强乘客体验。

与在公路上行驶和飞行相比,使用铁路被认为更环保。为了使铁路具有吸引力并有益于环境,各国政府和组织正在投资数位化。作为交通战略的一部分,许多政府正在投资铁路基础设施的数位化,以减少交通、污染和能源使用。根据欧洲铁路 FP2 R2DATO 的数据,到 2030 年,铁路和水路运输量将大幅转向铁路和水路运输,高速铁路运输量将增加一倍。

北美是全球铁路数位化市场的成长地区之一,涵盖了超过2/5的市场,且该地区的铁路基础设施老化,需要现代化。透过数位化,可以以合理的成本升级和提高目前营运的铁路系统的效率。电子商务和全球贸易正在增加北美货运的需求。数位化有潜力提高铁路的运能和可靠性,而铁路是货运供应链的重要组成部分。

动态:

乘客数量不断增加

更多的人转向城市化趋势增加了客流量。城市居民可以搭乘交通工具上下班,这减少了他们对私家车的依赖。数位化让铁路出游更有效率、更方便。线上订票系统、移动售票和火车时刻表的即时更新使乘客更容易选择火车作为他们的交通方式。

根据地铁新闻报道,2023 年 9 月,世界上一些最大的铁路网运载了数百万人。印度铁路透过促进市场一体化和社区互联互通,在国家发展中发挥了重要作用。印度铁路公司是全国最大的雇主和铁路服务的主要提供商,拥有超过 130 万名员工。到 2050 年,预计所有铁路活动的 40% 将来自印度铁路产业。 2022年,印度铁路分别运送了80.86亿人次和14.181亿吨货物。

政府措施提振市场

各国政府认识到,铁路数位化可以显着实现铁路系统现代化并提高其效率,其中包括优化列车时刻表、透过预测性维护减少停机时间和简化营运。高效、现代化的铁路系统透过改善连通性、降低运输成本和促进贸易来促进经济成长。各国政府将铁路数位化视为促进经济发展的一种方式。

例如,2023 年 9 月 22 日,印度铁路公司正在透过促进铁路旅客的数位交易来积极推动数位印度计画。 310 个火车站透过 1755 个服务提供者和 14 个食品聚合商提供电子餐饮服务,这些服务允许乘客在预订电子机票时或在火车上预订自己选择的餐食。

平均每天透过电子餐饮服务提供 41,844 餐。为推动火车站食品购买数位化交易,8,878个静态单元配备了数位支付设施,鼓励旅客在餐饮服务上进行数位支付。

采用工业 4.0

物联网感测器、资料分析和自动化等工业 4.0 技术使铁路营运商能够优化营运。预测性维护、列车和轨道的即时监控以及自动调度可以显着提高效率和生产力。数位化可以透过预测性维护、优化能源消耗以及简化物流和供应链流程来最大限度地减少停机时间,从而帮助降低营运成本。

据塔塔ELXSI 称,2021 年3 月,采用物联网进行铁路资产管理和预防性维护正在改变产业,提供对各种铁路子系统的即时监控和控制,其中包括从娱乐系统到动力总成的一切,有助于提高效率和乘客体验。铁路业的数位化是一个持续的过程,其标誌是工业4.0、铁路4.0和数位铁路的出现。

重点关注领域包括增强乘客体验、开发行动应用程式、实施电子票务、部署自动列车监管系统、确保网路安全、探索无人驾驶列车技术以及创建用于预测性维护的数位平台。

改造和旧系统

在铁路行业实施数位化可能成本高昂。对基础设施、感测器、资料分析工具和网路安全措施的初始投资可能是巨大的。较小的铁路营运商可能会发现为此类项目分配必要的资金具有挑战性。许多铁路系统仍然依赖传统的基础设施和技术。将数位解决方案与这些旧系统整合可能非常复杂且成本高昂。对现有铁路资产进行数位化改造可能需要进行重大修改。

数位铁路系统的连接性和资料共享不断增加,网路攻击和资料外洩的风险成为一个重大问题。确保敏感乘客和营运资料的安全是当务之急,但也可能具有挑战性。实现不同铁路系统之间的无缝互通性,尤其是在全球背景下,可能具有挑战性。必须建立资料交换和通讯协定的标准才能顺利运作。

目录

第 1 章:方法与范围

  • 研究方法论
  • 报告的研究目的和范围

第 2 章:定义与概述

第 3 章:执行摘要

  • 解决方案片段
  • 按服务摘录
  • 按应用程式片段
  • 按地区分類的片段

第 4 章:动力学

  • 影响因素
    • 司机
      • 乘客数量不断增加
      • 政府措施提振市场
      • 采用工业 4.0
    • 限制
      • 改造和旧系统
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

  • COVID-19 分析
    • 新冠疫情爆发前的情景
    • 新冠疫情期间的情景
    • 新冠疫情后的情景
  • COVID-19 期间的定价动态
  • 供需谱
  • 疫情期间政府与市场相关的倡议
  • 製造商策略倡议
  • 结论

第 7 章:透过解决方案

  • 远端监控
  • 路线优化与调度
  • 分析
  • 网路管理
  • 安全
  • 其他的

第 8 章:按服务

  • 专业的服务
  • 管理服务

第 9 章:按应用

  • 铁路营运管理
  • 讯号解决方案
  • 轨道运输管理
  • 货运管理
  • 乘客体验
  • 其他的

第 10 章:按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 俄罗斯
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第 11 章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 12 章:公司简介

  • Siemens Aktiengesellschaft
    • 公司简介
    • 产品组合和描述
    • 财务概览
    • 主要进展
  • Hitachi Rail Limited
  • Cisco Systems, Inc.
  • Huawei Technologies Co., Ltd.
  • Asea Brown Boveri
  • Toshiba Infrastructure Systems & Solutions Corporation
  • DXC Technology Company
  • Tego, Inc.
  • Uptake Technologies Inc.
  • ZEDAS GmbH

第 13 章:附录

简介目录
Product Code: ICT7010

Overview:

Global Rail Digitalization Market reached US$ 61.7 billion in 2022 and is expected to reach US$ 118.8 billion by 2030, growing with a CAGR of 8.7% during the forecast period 2023-2030.

Digitalization streamlines rail operations, making them more efficient and cost-effective and this includes better scheduling, predictive maintenance and optimized route planning. Digital technologies such as sensors, AI and IoT can improve safety by detecting and preventing accidents, monitoring track conditions and ensuring compliance with safety regulations. Digitalization can enhance the passenger experience through features like online booking, real-time updates on train status and onboard Wi-Fi.

Compared to driving on the road and flying, using the railway is considered to be more environmentally friendly. In order to make rail appealing and environmentally beneficial, governments and organizations are investing in digitization. As part of their transportation strategies, many governments are investing in the digitalization of rail infrastructure to reduce traffic, pollution and energy use. According to Europe Rail FP2 R2DATO, there is a substantial shift towards rails and waterways by 75% and traffic in high-speed railways will be double by 2030.

North America is among the growing regions in the global rail digitalization market covering more than 2/5th of the market and the region's rail infrastructure is aging and there is a need for modernization. The efficiency of currently operating rail systems may be upgraded and increased at a reasonable cost through digitalization. E-commerce and global trade are increasing demand for freight transportation in North America. Digitalization has the potential to increase the capacity and dependability of railroads, an essential component in the freight supply chain.

Dynamics:

Growing Number of Passengers

More people shifting towards the urbanization trend has increased passenger traffic. Urban residents are able to commute to work by transport, which lessens their reliance on private vehicles. Digitalization has made rail travel more efficient and convenient. Online booking systems, mobile ticketing and real-time updates on train schedules have made it easier for passengers to choose trains as their mode of transport.

According to Metro Rail News, in September 2023, some of the biggest railway networks in the world carried millions of people. The Indian Railways have played a significant role in the development of the nation by facilitating market integration and community connectivity. The largest employer in the country and the primary provider of railway services, Indian Railways, employs more than 1.3 million people. By 2050, it is expected that 40% of all rail activity will originate from the Indian railway industry. The Indian Railways moved 8.086 billion people and 1,418.1 million tonnes of freight in 2022, respectively.

Government Initiatives Boost the Market

Governments recognize that rail digitalization can significantly modernize and improve the efficiency of their railway systems and this includes optimizing train schedules, reducing downtime through predictive maintenance and streamlining operations. An efficient and modern railway system contributes to economic growth by improving connectivity, reducing transportation costs and facilitating trade. Governments see rail digitalization as a way to boost economic development.

For instance, on 22 September 2023, Indian Railways is actively promoting the Digital India initiative by facilitating digital transactions for railway travelers. E-catering services are available at 310 railway stations through 1755 service providers and 14 food aggregators and these services allow passengers to pre-order meals of their choice either at the time of booking an e-ticket or while traveling on a train.

On average, 41,844 meals are supplied per day through E-Catering services. To promote digital transactions for the purchase of food items at railway stations, 8878 static units have been equipped with digital payment facilities, this initiative aims to encourage passengers to make digital payments for catering services.

Adoption of Industry 4.0

Industry 4.0 technologies, such as IoT sensors, data analytics and automation, enable rail operators to optimize operations. Predictive maintenance, real-time monitoring of trains and tracks and automated scheduling can significantly improve efficiency and productivity. Digitalization can help reduce operational costs by minimizing downtime through predictive maintenance, optimizing energy consumption and streamlining logistics and supply chain processes.

According to Tata ELXSI, in March 2021, the adoption of IoT for asset management and preventive maintenance in railways is transforming the industry by providing real-time monitoring and control of various rail subsystems and this includes everything from entertainment systems to the powertrain, contributing to improved efficiency and passenger experience. Digitization in the rail industry is an ongoing process, marked by the emergence of industry 4.0, railway 4.0 and digital railways.

Key areas of focus include enhancing passenger experiences, developing mobile applications, implementing e-ticketing, deploying automatic train supervision systems, ensuring cybersecurity, exploring driverless train technologies and creating digital platforms for predictive maintenance.

Retrofitting and Older Systems

Implementing digitalization in the rail industry can be expensive. The initial investment in infrastructure, sensors, data analytics tools and cybersecurity measures can be substantial. Smaller rail operators may find it challenging to allocate the necessary funds for such projects. Many rail systems still rely on legacy infrastructure and technologies. Integrating digital solutions with these older systems can be complex and costly. Retrofitting existing rail assets for digitalization may require significant modifications.

The increased connectivity and data sharing in digital rail systems, the risk of cyberattacks and data breaches becomes a significant concern. Ensuring the security of sensitive passenger and operational data is a priority but can be challenging. Achieving seamless interoperability between different rail systems, especially in a global context, can be challenging. Standards for data exchange and communication protocols must be established to enable smooth operations.

Segment Analysis:

The global rail digitalization market is segmented based on solution, service, application and region.

Adoption of Remote Monitoring Boosts the Market

Rail companies are under pressure to enhance their operations more efficiently. Remote monitoring enables operators to make informed decisions and make the most of their resources by allowing for real-time tracking of train performance, infrastructure condition and equipment health. By avoiding breakdowns, reducing maintenance downtime and extending the lifespan of rail assets, remote monitoring lowers operational expenses. Additionally, it saves time and money by reducing the need for manual inspections and on-site maintenance.

For instance, on 12 July 2022, Digitalization in North American rail freight is transforming the industry by connecting freight railcar air brake data to cloud analytics. RailPulse, a coalition of railcar owners and Nexxiot, an IoT and analytics provider, are working together to digitize transport assets and this includes equipping railcars with IoT sensors and data connectivity to monitor air brake systems, this digitalization allows for automated brake tests, predictive maintenance and real-time monitoring of brake performance.

Geographical Penetration:

Rapid Urbanization and Modernization Boosts the Market

Asia-Pacific is dominating the global rail digitalization market and rapid urbanization as there are 4.2 billion of the global population in Asian cities. For these heavily populated urban regions to have effective mass transit alternatives, rail networks are crucial. In order to solve transportation issues, reduce emissions and encourage economic growth, governments around the region are investing extensively in rail infrastructure. High-speed rail, metro systems and the modernization of current rail networks are instances of such regular projects.

For instance, on 17 August 2021, The Huawei Technologies Co., Ltd. Asia-Pacific Railway Forum 2021, themed "Smart Rail, Better Future Mobility," concluded with a focus on achieving operational efficiency for urban mass transit systems, especially through driverless operations and workflow management. The event brought together more than 1300 participants from the railway industry, including key customers and partners like the Hong Kong Mass Transit Railway Corporation, Singapore Mass Rapid Transit Limited and Arup Group Limited.

Competitive Landscape

The major global players in the market include Siemens Aktiengesellschaft, Hitachi Rail Limited, Cisco Systems, Inc., Huawei Technologies Co., Ltd., Asea Brown Boveri, Toshiba Infrastructure Systems & Solutions Corporation, DXC Technology Company, Tego, Inc., Uptake Technologies Inc. and ZEDAS GmbH.

COVID-19 Impact Analysis

The pandemic forced many rail operators to expedite their digital transformation efforts. With reduced staff and social distancing measures in place, there was a greater need for remote monitoring, predictive maintenance and automation and this led to increased investments in digital technologies. The need for remote monitoring of rail assets, such as tracks, signals and rolling stock, became more critical during the pandemic.

Changing travel restrictions and safety protocols, rail operators relied on digital platforms and mobile apps to provide passengers with real-time information about train schedules, occupancy levels and safety measures and this enhanced the passenger experience and promoted safety. The pandemic highlighted the importance of data analytics in predicting and responding to changes in passenger demand and operational disruptions. Rail companies increasingly turned to data-driven insights to adjust schedules and optimize resources.

Many rail operators faced budget constraints due to reduced passenger numbers and revenue during the pandemic and this limited their ability to invest in new digital technologies and delayed some digitalization projects. The global supply chain disruptions caused by the pandemic affected the availability of digital equipment and components needed for rail digitalization projects. Delays in the supply chain hindered the implementation of some digital solutions.

AI Impact

AI-powered predictive maintenance systems analyze data from sensors and equipment to predict when maintenance is required and this reduces downtime, lowers maintenance costs and enhances the reliability of rail services. AI algorithms can analyze real-time data from cameras and sensors to detect safety risks, such as obstacles on the tracks or unauthorized access to rail facilities.

AI can optimize rail schedules, route planning and energy consumption. Machine learning algorithms can adjust schedules in real-time based on factors like weather conditions, track availability and passenger demand, leading to more efficient operations. AI-driven chatbots and virtual assistants can provide real-time information to passengers, answer their queries and offer personalized recommendations. AI can also help optimize ticket pricing and seat allocation for better passenger experiences.

For instance, on 17 September 2023, the Indian Railways conducted a successful trial of an Artificial Intelligence module called 'Ideal Train Profile' aimed at addressing the issue of waiting lists for train tickets and this AI-driven module has shown promising results by reducing the size of waiting lists by approximately five to six percent and this development marks a significant step in how the Indian Railways manages its berth inventory, offering hope for shorter waiting times for passengers looking to book train tickets.

Russia- Ukraine War Impact

The conflict may lead to damage to rail infrastructure, including tracks, stations and signaling systems, this damage can disrupt rail operations and hamper ongoing digitalization efforts. Rebuilding and repairing infrastructure will be a priority before implementing digital technologies. The economic repercussions of the war, including sanctions and reduced trade, can strain the budgets of rail operators and governments and this may lead to delays or cutbacks in digitalization projects, as funding priorities shift to more immediate needs.

The conflict can disrupt supply chains for digital equipment and components needed for rail digitalization projects. Delays in the delivery of technology and materials can hinder the implementation of digital solutions. In times of conflict, the risk of cyberattacks on critical infrastructure, including rail systems, increases. Rail operators will need to invest in robust cybersecurity measures to protect their digital infrastructure from potential threats.

By Solution

  • Remote Monitoring
  • Route Optimization & Scheduling
  • Analytics
  • Network Management
  • Security
  • Others

By Service

  • Professional Services
  • Managed Services

By Application

  • Rail Operation Management
  • Signaling Solution
  • Rail Traffic Management
  • Freight Management
  • Passenger Experience
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In March 2021, Sulzer and Siemens Aktiengesellschaft Large Drives Applications entered into a collaboration to provide enhanced digital solutions for operators of large centrifugal pumps. By combining their respective IoT platforms and services, BLUE BOX from Sulzer and SIDRIVE IQ from Siemens Aktiengesellschaft LDA, the two companies aim to deliver an integrated solution that improves equipment reliability and reduces operational costs.
  • In April 2023, Thales is introducing new digital rail solutions aimed at improving operational efficiency and passenger experience while promoting greener mobility. During its "Smart Mobility Experience" digital event, Thales will showcase these innovations, which include digital signaling, train autonomy, mobile ticketing, passenger flow analytics, data-driven operation control and smart maintenance.
  • In March 2021, Thales launched SelTrac Generation 8 (G8), the latest iteration of its Communications Based Train Control system for urban, metro and light rail networks. SelTrac™ G8 features a new digital architecture with enhanced services and autonomy capabilities. The system is designed to offer flexibility and evolution capabilities while reducing installation and lifecycle cost.

Why Purchase the Report?

  • To visualize the global rail digitalization market segmentation based on solution, service, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of Rail Digitalization market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global rail digitalization market report would provide approximately 61 tables, 62 figures and 182 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Solution
  • 3.2. Snippet by Service
  • 3.3. Snippet by Application
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Number of Passengers
      • 4.1.1.2. Government Initiatives Boost the Market
      • 4.1.1.3. Adoption of Industry 4.0
    • 4.1.2. Restraints
      • 4.1.2.1. Retrofitting and Older Systems
    • 4.1.3. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Solution

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 7.1.2. Market Attractiveness Index, By Solution
  • 7.2. Remote Monitoring*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Route Optimization & Scheduling
  • 7.4. Analytics
  • 7.5. Network Management
  • 7.6. Security
  • 7.7. Others

8. By Service

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Services
    • 8.1.2. Market Attractiveness Index, By Services
  • 8.2. Professional Services*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Managed Services

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Rail Operation Management*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Signaling Solution
  • 9.4. Rail Traffic Management
  • 9.5. Freight Management
  • 9.6. Passenger Experience
  • 9.7. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Russia
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Siemens Aktiengesellschaft*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Hitachi Rail Limited
  • 12.3. Cisco Systems, Inc.
  • 12.4. Huawei Technologies Co., Ltd.
  • 12.5. Asea Brown Boveri
  • 12.6. Toshiba Infrastructure Systems & Solutions Corporation
  • 12.7. DXC Technology Company
  • 12.8. Tego, Inc.
  • 12.9. Uptake Technologies Inc.
  • 12.10. ZEDAS GmbH

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us