封面
市场调查报告书
商品编码
1423522

全球 FCC 催化剂市场 - 2024-2031

Global FCC Catalyst Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 186 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

概述

2023 年,全球 FCC 催化剂市场规模达到 27 亿美元,预计到 2031 年将达到 39 亿美元,2024-2031 年预测期间CAGR为 4.9%。

由于全球经济向更高石化产量的方向转变,FCC 催化剂市场正在扩大。炼油厂正在扩大其提供的产品范围,包括石化材料和运输燃料。 FCC 催化剂对于这项变革至关重要,因为它们能够同时生产有价值的石化产品和优质运输燃料,满足石化产业不断变化的需求。

由于全球对汽油和柴油等精炼石油产品的需求不断增长,FCC 催化剂的市场正在扩大。运输燃料的需求随着人口成长和工业化而成长。为了满足对更清洁、更有效率燃料不断增长的需求,FCC 催化剂透过提高转化率和提高高价值产品的产量,在炼油过程中发挥着至关重要的作用。

北美是全球FCC催化剂市场的成长地区之一,占据超过1/3的市场。石油和天然气业务在北美拥有大量炼油厂,使该大陆成为重要枢纽。炼油厂产能持续增加和改善,部分原因是对汽油和柴油等运输燃料的需求不断增加。先进的 FCC 催化剂需求量很大,因为它们可以最大限度地提高高价值产品的产量并提高转换率。

动力学

对加工石油产品的需求不断扩大

对精炼石油产品的需求不断增长是推动全球FCC催化剂市场的主要因素之一。随着世界人口的成长和工业化的发展,精炼产品和运输燃料(包括柴油和汽油)的使用量也不断增加。 FCC 催化剂对于提高炼油厂流化催化裂解装置 (FCCU) 的性能至关重要,从而使石化产品和高价值燃料的生产变得更加容易。

例如,巴斯夫于 2022 年推出了 Fourtitude,这是一种新型流化催化裂解 (FCC) 催化剂,经过优化,可以最大限度地提高渣油原料的丁烯产量。 Fourtitude 基于巴斯夫的多框架拓扑 (MFT) 技术,在维持催化剂活性的同时,实现了对丁烯的卓越选择性。该催化剂结合了 MFT 和金属钝化技术,可在渣油原料应用中提供卓越的丁烯选择性和耐金属性。

石化产业下游整合日益受到重视

石化产业对下游整合的日益关注是FCC催化剂需求成长的主要动力。许多炼油厂正在积极扩大其生产的产品范围,除了传统的燃料之外,还包括有价值的石化产品的製造。这项发展是实现扩大产品线和满足全球石化产品不断增长的需求的获利潜力的结果。

例如,巴斯夫于 2020 年商业化推出了 Fourtune,这是一种用于柴油原料的新型流化催化裂解 (FCC) 催化剂。 Fourtune 利用多框架拓扑 (MFT) 技术进行了最佳化,丁烯选择性优于丙烯,同时保持催化剂活性。商业试验证实了其透过提高丁烯选择性、高转化率和保留焦炭选择性塔底产物所带来的经济效益,从而提高了炼油厂高馏分油收率的获利能力。

材料和初始投资成本高昂

在炼油设施中整合和安装尖端催化剂技术的高昂初始成本是全球 FCC 催化剂产业成长的重要障碍。像 PARAGON 这样的创新催化剂通常需要大量资本支出,因为它们包含新材料或技术。

炼油厂在进行这些投资时可能会遇到财务困难,特别是在利润率低迷或经济不稳定的情况下。一些炼油厂,尤其是规模较小或较老的炼油厂,可能会因高昂的初始成本而望而却步,这将限制现代 FCC 催化剂的普遍采用并阻碍市场扩张。

严格的环境法规

严格的环境法仍是FCC催化剂全球市场的重大障碍。由于需要遵守越来越严格的环境规则和排放要求,炼油厂的运作变得更加复杂和昂贵,儘管催化剂对于提高转化率和生产更清洁的燃料至关重要。

实现这些目标通常需要不断的技术进步和精炼程序的修改,这会影响 FCC 催化剂的选择和使用。该行业可能很难保持持续创新,以满足不断变化的法规和永续发展目标,特别是对于可能需要帮助才能跟上合规要求快速变化的小型炼油厂而言。这将限制 FCC 催化剂市场的整体成长能力。

目录

第 1 章:方法与范围

  • 研究方法论
  • 报告的研究目的和范围

第 2 章:定义与概述

第 3 章:执行摘要

  • 按类型分類的片段
  • 成分片段
  • 按配置分類的片段
  • 按应用程式片段
  • 按地区分類的片段

第 4 章:动力学

  • 影响因素
    • 司机
      • 对加工石油产品的需求不断扩大
      • 石化产业下游整合日益受到重视
    • 限制
      • 材料和初始投资成本高昂
      • 严格的环境法规
    • 机会
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

  • COVID-19 分析
    • 新冠疫情爆发前的情景
    • 新冠疫情期间的情景
    • 新冠疫情后的情景
  • COVID-19 期间的定价动态
  • 供需谱
  • 疫情期间政府与市场相关的倡议
  • 製造商策略倡议
  • 结论

第 7 章:按类型

  • 汽油减硫
  • 最大轻烯烃
  • 最大中间馏分
  • 最大底部转换
  • 其他的

第 8 章:按成分

  • 沸石
    • 天然沸石
    • 合成沸石
  • 金属
    • 贵金属
    • 稀土金属
    • 过渡金属和贱金属
    • 钼(Mo)
    • 钨 (W)
    • 钴 (Co)
    • 镍 (Ni)
    • 铁 (Fe)
    • 锆 (Zr)
    • 其他的
  • 化合物
    • 氧化钠
    • 氧化铝
    • 二氧化硅
    • 其他的

第 9 章:按配置

  • 并排
  • 堆迭式

第 10 章:按应用

  • 减压瓦斯油 (VGO) 进料
  • 粗柴油原料
  • 渣油饲料
    • 重渣饲料
    • 适量渣油进料
    • 轻质渣油饲料
    • 其他的
  • 其他的

第 11 章:按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 俄罗斯
    • 西班牙
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第 12 章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 13 章:公司简介

  • BASF SE
    • 公司简介
    • 产品组合和描述
    • 财务概览
    • 主要进展
  • WR Grace & Co-Conn
  • China Petroleum & Chemical Corporation
  • Albemarle Corporation
  • JGC Catalysts & Chemicals Co., Ltd.
  • Haldor Topsoe A/S
  • Rezel Catalysts Corporation
  • Clariant International Ltd.
  • Anten Chemical Co., Ltd.
  • SINOCATA

第 14 章:附录

简介目录
Product Code: CH7949

Overview

Global FCC Catalysts Market reached US$ 2.7 billion in 2023 and is expected to reach US$ 3.9 billion by 2031, growing with a CAGR of 4.9% during the forecast period 2024-2031.

The market for FCC catalysts is expanding due to the change in global economics toward higher petrochemical output. Refineries are expanding the range of products they provide to include materials for petrochemicals as well as transportation fuels. FCC catalysts are essential to this change because they enable the manufacture of valuable petrochemicals and premium transportation fuels at the same time, satisfying the changing needs of the petrochemical industry.

The market for FCC catalysts is expanding due to the rising demand for refined petroleum products, such as gasoline and diesel, on a global level. The demand for transportation fuels rises in unison with population growth and industrialization. To satisfy the growing demand for cleaner and more efficient fuels, FCC catalysts play a crucial role in the refining process by increasing conversion rates and enhancing the production of high-value products.

North America is among the growing regions in the global FCC catalysts market covering more than 1/3rd of the market. The oil and gas business has a large number of refineries operating in North America, making the continent a key hub. Refinery capacity continues to be increased and improved due in part to the rising demand for transportation fuels like gasoline and diesel. Advanced FCC catalysts are in great demand because they maximize the production of high-value products and improve conversion rates.

Dynamics

Expanding Demand for Processed Petroleum Products

The rising demand for refined petroleum products is one of the main factors propelling the global FCC catalysts market. The use of refined goods and transportation fuels including diesel and gasoline is rising in tandem with the world's population growth and industrialization. FCC catalysts are essential for improving the fluid catalytic cracking units' (FCCUs) performance in refineries, thus rendering it easier to produce petrochemicals and high-value fuels.

For Instance, in 2022, BASF launched Fourtitude, a new Fluid Catalytic Cracking (FCC) catalyst optimized for maximizing butylene production from resid feedstocks. Based on BASF's Multiple Framework Topology (MFT) technology, Fourtitude achieves superior selectivity for butylenes while maintaining catalyst activity. The catalyst combines MFT and metals passivation technologies to offer exceptional butylene selectivity and resistance to metals in resid feedstock applications.

Growing Priority on Downstream Integration in the Petrochemical Industry

The petrochemical industry's increasing focus on downstream integration is a major driver of the rise in demand for FCC catalysts. Many refineries are actively expanding the range of products they produce to include the manufacturing of valuable petrochemicals in addition to the traditional emphasis on fuels. The development is the result of a realization of the profitable potential of broadening product lines and satisfying the expanding demand for petrochemical goods around the globe.

For Instance, in 2020, BASF commercially launched Fourtune, a new Fluid Catalytic Cracking (FCC) catalyst for gasoil feedstock. Utilizing Multiple Framework Topology (MFT) technologies, Fourtune is optimized for superior butylene selectivity over propylene while maintaining catalyst activity. Commercial trials confirm its economic benefits through enhanced butylene selectivity, high conversion rates and the preservation of coke-selective bottoms, leading to increased profitability for refiners with high distillate yields.

Highly Costly Material and Initial Investment

The high initial costs associated with integrating and installing cutting-edge catalyst technologies in refining facilities are an important inhibitor to the growth of the globally FCC catalysts industry. Innovative catalysts like PARAGON often require significant capital expenditures because they include new materials or technology.

The refineries may have financial difficulties while making these investments, particularly during slack profit margins or economic instability. Some refineries, especially those that are smaller or older, may be discouraged by the high initial costs, which would restrict the general adoption of modern FCC catalysts and hinder market expansion.

Strict Environmental Regulations

Strict environmental laws are still a significant obstacle to the global market for FCC catalysts. Refinery operations become more complex and expensive due to the need to comply with ever-tighter environmental rules and emissions requirements, even though catalysts are essential for improving conversion rates and creating cleaner fuels.

Realizing these objectives often requires ongoing technical advancements and modifications to refining procedures, which affects the selection and use of FCC catalysts. It can be difficult for the industry to maintain the constant innovation essential to meet changing regulations and sustainability objectives, particularly for smaller refineries that might need help to keep up with the quick changes in compliance requirements. The would limit the market's ability to grow overall for FCC catalysts.

Segment Analysis

The global FCC catalysts market is segmented based on type, ingredients, configuration, application and region.

Rising Demand for Zeolites in Refining Industry

The zeolites segment is among the growing regions in the global FCC catalysts market covering more than 1/3rd of the market. Zeolites are crystalline, microporous aluminosilicate minerals that are well-known for their massive surfaces and catalytic powers. The increasing demand for FCC catalysts, especially in the refining sector where they are widely used to boost the productivity of hydrocarbon cracking processes, is driving the growth of the zeolites demand.

Its distinct structure facilitates efficient catalysis and the generation of high-value products like diesel and gasoline, which promotes the expansion and efficiency of the refining industry as an entire sector. Zeolites are additionally preferred as they can increase the yield and selectivity of important products in FCC units. Zeolite-based FCC catalysts are now required in refineries as they aim to produce cleaner fuel at greater conversion rates.

Geographical Penetration

Growing FCC Catalysts Demand in Oil and Gas Industry in North America

North America has been a dominant force in the global FCC catalysts market is being driven by the growing oil and gas sector in North America has led to growth in the FCC (Fluid Catalytic Cracking) catalyst market. There are a few refineries in North America, especially in US and Canada, which are essential to the processing of crude oil. There's a rising need for sophisticated FCC catalysts as these refineries attempt to improve yields and streamline their operations.

Additionally, the North American market is growing as a result of continuous research and development initiatives as well as advances in technology. New catalyst architecture and formulation advances have produced more effective and adaptable FCC catalysts. North American refineries are eager to use these state-of-the-art catalyst technologies to maintain a competitive edge, boost productivity and satisfy evolving customer demands.

For Instance, in 2023, W. R. Grace & Co.'s launched PARAGON FCC catalyst had a Vanadium (V) trap for fluid catalytic cracking units that were based on rare earth elements. The innovation extends the FCC operating window, which provides processing flexibility for increased profitability from a range of feedstocks. In particular, PARAGON increases conversion at a constant Coke yield and upgrades bottoms to the maximum, contributing to the more sustainable production of fuel.

For Instance, in 2023, Siemens Energy, Inc. acquired its Fluid Catalyst Cracking Unit (FCCU) Hot Gas Expander product line to Rotating Machinery Services, Inc. Through this transaction, the FCCU Expander product line's inventory, intellectual property and related tooling are now part of RMS. Clients can expect top-notch assistance from RMS's portfolio of three US-based ISO9001:2015 certified service centers, which is further enhanced by a globally network of regional partners.

COVID-19 Impact Analysis

The COVID-19 pandemic has affected many aspects of the business and had a significant impact on the globally FCC (Fluid Catalytic Cracking) catalyst market. Disruptions in the global supply chain have a major impact. Labor shortages, travel bans and lockdowns have made it hard to produce and move the raw materials needed to make FCC catalysts. Due to supply chain issues, there were delays, higher expenses and variations in the availability of FCC catalysts.

From the beginning of 2020, the majority of reputable research firms have been predicting the refining products market, initially due to the effects of IMO 2020 and then COVID-19. The market climate has changed, making it more appealing for refineries to increase LCO output in addition to gasoline and LPG quantities. The goal of introducing the atrium was to boost transportation fuel yields and raise overall operational profitability.

The FCC catalyst is made to specifically satisfy the needs of the unit in terms of metal tolerance, surface area, rare earth on zeolite, matrix type and pore architecture to maximize the refinery's profitability. Initially improves heavy molecule (bottoms) cracking and to enable the diffusion of heavy feed molecules, the pore design needs to be optimized. Furthermore, to prioritize conversion or distillate yield, the relative zeolite and matrix content needs to be optimized.

The refining industry, which is a major user of FCC catalysts, has been directly impacted by the drop-in global economic activity and the decreased demand for oil and refined products during quarantines. Refineries encountered lower production levels due to a decline in tourism and industrial activity, which affected the need for catalysts.

Russia-Ukraine War Impact Analysis

The current conflict between Russia and Ukraine has created a great deal of geopolitical uncertainty that might affect the globally market for FCC (Fluid Catalytic Cracking). As an important actor in the global energy market, Russia can potentially be negatively impacted by any regional interruptions brought on by the conflict, which could have an impact on the supply chain for vital raw materials required to produce FCC catalysts.

Delays in the supply chain raise prices and cause shortages, which would affect FCC catalyst production and availability globally. Additionally, the conflict has increased energy market volatility, which has an effect on refining margins and decision-making in the oil refining sector. Energy price fluctuations may lead refineries to reevaluate their investment and production plans, which could change the market for FCC catalysts.

In addition, investor confidence may be impacted by geopolitical tension-related ambiguity, which might cause delays in strategic planning and investment choices in the FCC catalyst industry. The economic ramifications of the conflict in Europe may have an impact on the dynamics of the FCC catalyst market at the regional level. Changes to trade agreements, governmental laws and economic stability in regions affected might lead to changes in the refining procedures and catalyst demand trends

By Type

  • Gasoline Sulfur Reduction
  • Maximum Light Olefins
  • Maximum Middle Distillates
  • Maximum Bottoms Conversion
  • Others

By Ingredients

  • Zeolites
    • Natural Zeolites
    • Synthetic Zeolites
  • Metals
    • Precious Metals
    • Rare Earth Metals
    • Transition & Base Metals
    • Molybdenum (Mo)
    • Tungsten (W)
    • Cobalt (Co)
    • Nickel (Ni)
    • Iron (Fe)
    • Zirconium (Zr)
    • Others
  • Chemical Compound
    • Sodium oxide
    • Aluminum oxide
    • Silicon Dioxide
    • Others
  • Others

By Configuration

  • Side-by-Side
  • Stacked

By Application

  • Vacuum Gas Oil (VGO) feeds
  • Gas Oil feedstock
  • Resid Feed
    • Heavy Resid feed
    • Moderate Resid feed
    • Light Resid feed
    • Others
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On October 31, 2022, SGP BioEnergy planned to construct two significant renewable fuel plants in South America, one each in Panama at Colon and Balboa. Sustainable aviation fuel (SAF) and renewable diesel (RD) are anticipated to be produced by these facilities, respectively. By incorporating green hydrogen from the refining process, SGP BioEnergy has selected Topsoe technology to enable the generation of low-carbon fuels and enable the plant to run with net-zero emissions.

Competitive Landscape

The major global players in the market include BASF SE, WR Grace & Co-Conn, China Petroleum & Chemical Corporation, Albemarle Corporation, JGC Catalysts & Chemicals Co., Ltd., Haldor Topsoe A/S, Rezel Catalysts Corporation, Clariant International Ltd., Anten Chemical Co., Ltd. and SINOCATA.

Why Purchase the Report?

  • To visualize the global FCC catalysts market segmentation based on type, ingredients, configuration, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of FCC catalysts market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available in Excel consisting of key products of all the major players.

The global FCC catalysts market report would provide approximately 70 tables, 65 figures and 186 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Ingredients
  • 3.3. Snippet by Configuration
  • 3.4. Snippet by Application
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Expanding Demand for Processed Petroleum Products
      • 4.1.1.2. Growing Priority on Downstream Integration in the Petrochemical Industry
    • 4.1.2. Restraints
      • 4.1.2.1. Highly Costly Material and Initial Investment
      • 4.1.2.2. Strict Environmental Regulations
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Gasoline Sulfur Reduction*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Maximum Light Olefins
  • 7.4. Maximum Middle Distillates
  • 7.5. Maximum Bottoms Conversion
  • 7.6. Others

8. By Ingredients

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Ingredients
    • 8.1.2. Market Attractiveness Index, By Ingredients
  • 8.2. Zeolites*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 8.2.3. Natural Zeolites
    • 8.2.4. Synthetic Zeolites
  • 8.3. Metals
    • 8.3.1. Precious Metals
    • 8.3.2. Rare Earth Metals
    • 8.3.3. Transition & Base Metals
    • 8.3.4. Molybdenum (Mo)
    • 8.3.5. Tungsten (W)
    • 8.3.6. Cobalt (Co)
    • 8.3.7. Nickel (Ni)
    • 8.3.8. Iron (Fe)
    • 8.3.9. Zirconium (Zr)
    • 8.3.10. Others
  • 8.4. Chemical Compound
    • 8.4.1. Sodium Oxide
    • 8.4.2. Aluminum Oxide
    • 8.4.3. Silicon Dioxide
    • 8.4.4. Others

9. By Configuration

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Configuration
    • 9.1.2. Market Attractiveness Index, By Configuration
  • 9.2. Side-by-Side*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Stacked

10. By Application

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.1.2. Market Attractiveness Index, By Application
  • 10.2. Vacuum Gas Oil (VGO) Feeds*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Gas Oil Feedstock
  • 10.4. Resid Feed
    • 10.4.1. Heavy Resid Feed
    • 10.4.2. Moderate Resid Feed
    • 10.4.3. Light Resid Feed
    • 10.4.4. Others
  • 10.5. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Ingredients
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Configuration
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Ingredients
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Configuration
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Russia
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Ingredients
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Configuration
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Ingredients
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Configuration
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Ingredients
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Configuration
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. BASF SE*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. WR Grace & Co-Conn
  • 13.3. China Petroleum & Chemical Corporation
  • 13.4. Albemarle Corporation
  • 13.5. JGC Catalysts & Chemicals Co., Ltd.
  • 13.6. Haldor Topsoe A/S
  • 13.7. Rezel Catalysts Corporation
  • 13.8. Clariant International Ltd.
  • 13.9. Anten Chemical Co., Ltd.
  • 13.10. SINOCATA

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us