封面
市场调查报告书
商品编码
1446799

全球人体增强市场 - 2024-2031

Global Human Augmentation Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 246 Pages | 商品交期: 约2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

概述

2023年,全球人体增强市场规模达2,526亿美元,预计2031年将达到7,807亿美元,2024-2031年预测期间CAGR为15.6%。

对辅助科技日益增长的需求旨在提高那些因年龄或残疾而受到限制的人的独立性和生活品质。为了解决行动问题、感官障碍和其他功能缺陷,外骨骼、义肢、脑机介面和辅助机器人等人体增强技术正在被创造和更频繁地使用。

由于技术采用较早,亚太地区成为市场的主导地区。 IDC 预计,到 2026 年,近五分之一的亚洲工业运作将把人工智慧和机器学习技术融入机器人和自动化流程、基于视觉的系统和其他流程中。该预测日期为 2024 年 1 月 8 日。此次整合旨在提高各行业的营运效率、减少停机时间并增强工人安全。

预计到 2027 年,亚太地区约 60% 的组织将透过整合自动化技术来增强营运角色。该实施旨在提高员工敬业度并将员工效率提高 50%。到 2028 年,亚洲四分之一的工业组织预计将在其至少 30% 的营运地点实施专用 LTE 或 5G 网路。采用该技术的目的是减少初始费用并增强资料收集能力。

动力学

不断发展的国防和军事

战场上采用虚拟实境(VR)和扩增实境(AR)技术,为士兵提供更高的态势感知能力。 AR显示器透过将战术资料和对手位置即时迭加到士兵的视野中来增强战斗情况下的决策和协调。由于在军事训练和模拟中使用了人类改进技术,士兵可以在逼真的虚拟环境中进行训练,模拟战斗场景、医疗紧急情况和其他关键事件。基于 VR 的课程可改善决策、肌肉记忆和技能学习,从而提高全面的准备和效率水平。

主要参与者对人类增强的投资不断增加,有助于推动预测期内的市场成长。例如,2022 年 5 月 4 日,DASA 启动了一个创新重点领域,旨在确定适合国防和安全应用的下一代 (GAN) 人体增强技术。正在为创新的下一代 (GAN) 人体增强解决方案寻求资助提案,总价值约为 70,000 英镑。

不断发展的製造业

使用者可以透过 AR 和 VR 技术提供的丰富的互动体验与虚拟模拟和增强环境进行互动。这些技术可以应用于人体增强领域,为残疾人创建极其有效和有趣的训练计划、復健练习或支援设备。

在医疗保健和製造业等各个行业,AR 和 VR 技术提供了真实且安全的培训和教育环境。这些模拟有助于培训专业人员执行复杂的手术、完善手术计划或复製没有现实世界危险的危险场景。

技术成本高

高技术成本确实可能成为人类增强全球市场扩张的重要障碍。穿戴式科技、植入物和其他旨在增强人类能力的改进都是人类增强技术的例子。这些技术通常需要大量的製造、研究和开发支出。这些技术的许多潜在买家无法获得它们,因为这些费用随后转移到消费者或医疗保健提供者身上。

企业和组织的技术采用率也会受到其高成本的影响。例如,由于前期费用,企业可能会对投资于员工的人体增强技术持谨慎态度。此外,对于医疗保健从业者来说,将昂贵的增强技术融入他们的实践中可能会很困难,特别是当报销率低于设备的总成本时。

目录

第 1 章:方法与范围

  • 研究方法论
  • 报告的研究目的和范围

第 2 章:定义与概述

第 3 章:执行摘要

  • 按类型分類的片段
  • 按产品分类的片段
  • 技术片段
  • 按应用程式片段
  • 最终使用者的片段
  • 按地区分類的片段

第 4 章:动力学

  • 影响因素
    • 司机
      • 不断发展的国防和军事
      • 不断发展的製造业
    • 限制
      • 技术成本高
    • 机会
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

  • COVID-19 分析
    • 新冠疫情爆发前的情景
    • 新冠疫情期间的情景
    • 新冠疫情后的情景
  • COVID-19 期间的定价动态
  • 供需谱
  • 疫情期间政府与市场相关的倡议
  • 製造商策略倡议
  • 结论

第 7 章:按类型

  • 内建
  • 穿戴式

第 8 章:副产品

  • 身体磨损
  • 非身体佩戴

第 9 章:按技术

  • 穿戴式
  • 虚拟实境
  • 扩增实境
  • 外骨骼
  • 智慧虚拟助理
  • 其他的

第 10 章:按应用

  • 医疗的
  • 卫生保健
  • 防御
  • 工业的
  • 其他的

第 11 章:最终用户

  • 纸浆与造纸
  • 水处理
  • 食品与饮料
  • 农化
  • 居家及清洁
  • 化学加工
  • 其他的

第 12 章:按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第13章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 14 章:公司简介

  • SAMSUNG
    • 公司简介
    • 产品组合和描述
    • 财务概览
    • 主要进展
  • Panasonic Corporation
  • Microsoft
  • TOYOTA MOTOR CORPORATION
  • General Motors
  • Google
  • FOSSIL GROUP
  • Raytheon Technologies Corporation
  • Life Sense Group
  • Garmin Ltd

第 15 章:附录

简介目录
Product Code: ICT7967

Overview

Global Human Augmentation Market reached US$ 252.6 Billion in 2023 and is expected to reach US$ 780.7 Billion by 2031, growing with a CAGR of 15.6% during the forecast period 2024-2031.

The increasing demand for assistive technology is intended to improve the independence and quality of life for those with age-related or disability-related limitations. To try to solve mobility issues, sensory impairments and other functional shortcomings, human augmentation technologies such as exoskeletons, prosthetic limbs, brain-computer interfaces and assistive robots are being created and used more often.

Asia-Pacific is a dominating region in the market due to the early adoption of the technologies. IDC projects that by 2026, almost one-fifth of Asian industrial operations will incorporate AI and ML technologies into robotics and automation processes, vision-based systems and other processes. The date of this prediction is January 8, 2024. The integration aims to raise operational efficiency, decrease downtime and enhance worker safety within various industries.

By 2027, it is projected that approximately 60% of organizations in the Asia/Pacific region will enhance operational roles by integrating automation technology. The implementation aims to enhance employee engagement and unleash a 50% rise in worker efficiency. By the year 2028, a quarter of industrial organizations in Asia are expected to have implemented Private LTE or 5G networks across at least 30% of their operational sites. The adoption is aimed at decreasing initial expenses and enhancing data collection capabilities.

Dynamics

Growing Defence and Military

Virtual reality (VR) and augmented reality (AR) technologies are employed on the battlefield to provide soldiers with a higher situational awareness. AR displays enhance decision-making and coordination during combat situations by superimposing tactical data and opponent positions in real time onto the soldier's field of vision. Soldiers can train in lifelike virtual settings that mimic combat scenarios, medical emergencies and other crucial events thanks to the use of human improvement technology in military training and simulation. VR-based courses improve decision-making, muscle memory and skill learning, which raises preparedness and effectiveness levels all around.

Growing investments by major key players for human augmentation help to boost market growth over the forecast period. For instance, on May 04, 2022, DASA initiated an Innovation Focus Area aimed at identifying Generation-After-Next (GAN) human augmentation technologies suitable for applications in defense and security. Funding proposals are being sought for innovative Generation-After-Next (GAN) human augmentation solutions, with a total value of approximately £70,000.

Growing Manufacturing Industry

Users can interact with virtual simulations and augmented environments through rich and interactive experiences provided by AR and VR technology. The technologies can be applied to the field of human augmentation to create extremely effective and entertaining training schedules, rehabilitation exercises or supportive devices for people with disabilities.

In various industries like healthcare and manufacturing, AR and VR technologies provide realistic and secure training and educational environments. The simulations are instrumental in training professionals in intricate procedures, refining surgical planning or replicating hazardous scenarios without real-world dangers.

High Cost of the Technology

High cost of technology could indeed be an important barrier to the expansion of the global marketplace for human enhancement. Wearable technology, implants and other improvements intended to augment human capacities are instances of human augmentation technologies. The technologies frequently necessitate large expenditures for manufacturing, research and development. Many potential buyers of these technologies are unable to obtain them because these expenses are subsequently transferred to consumers or healthcare providers.

The adoption rates of technology by businesses and organizations can also be impacted by its high cost. For instance, because of the upfront expenses, businesses might be cautious about investing in human augmentation technology for employees. Furthermore, incorporating expensive augmentation technologies into their practices can prove difficult for healthcare practitioners, particularly when reimbursement rates fall short of the whole cost of the equipment.

Segment Analysis

The global human augmentation market is segmented based on type, product, technology, application, end-user and region.

Growing Demand for Wearable Type Human Augmentation

Based on the type, the human augmentation market is segmented into in-built and wearable. The development of more complex and adaptable wearable technology that can be smoothly integrated with the human body is the result of ongoing breakthroughs in this field. Wearable augmentation technologies are becoming more useful and user-friendly because of developments in component miniaturization, battery life, sensor capabilities and form factor comfort.

The growing product launches by the major key players helps to boost segment growth over the forecast period. For instance, on July 27,2020, Hilti launched EXO-O1 its first exoskeleton for construction. The EXO-O1 is the result of a collaboration between Hilti Group and Ottobock SE & Co. KGaA, a top supplier of orthotics, prosthetics and exoskeletons that help people improve and preserve their physical independence.

Geographical Penetration

Asia-Pacific is Dominating the Human Augmentation Market

Asia-Pacific accounted for the largest market share in the global human augmentation market due to the growing research and development activities by major key players. The expansion of the industry is being fueled by significant investments made by private and public sectors in various sectors. Populations of Asia-Pacific including South Korea and Japan, are ageing rapidly. The need for Human Augmentation technology in the region is driven by its ability to address issues associated with aging, such as healthcare robots and aids for mobility devices.

Key market players have introduced new products that contribute to the growth of regional markets throughout the forecast period. For instance, on October 18, 2022, to improve human abilities, KYOCERA introduced new human augmentation technology prototypes with advanced AI in Japan. Three wearable sensors one each for the wrist, ankle and ear are used by Kyocera's AI technology to monitor a user's activity. Based on this data, the system offers coaching instructions aimed at enhancing posture and stride.

Competitive Landscape

The major global players in the market include SAMSUNG, Panasonic Corporation, Microsoft, TOYOTA MOTOR CORPORATION, General Motors, Google, FOSSIL GROUP, Raytheon Technologies Corporation, Life Sense Group and Garmin Ltd.

COVID-19 Impact Analysis

There is a disruption in the supply chain of the human augmentation technologies. The market for human augmentation faced both possibilities and problems as a result of the trend towards remote work and collaboration. While remote work hindered in-person collaboration and hands-on development activities, it also accelerated the adoption of virtual collaboration tools and augmented reality technologies for remote assistance and training purposes.

The pandemic changed consumer interests and behavior, which affected the market for technology enabling human augmentation. Interest in wearable technology and augmented reality solutions for telemedicine, remote patient care and healthcare monitoring surged as health and safety became more of a priority. During the pandemic, the healthcare industry became a focus area, stimulating investment and innovation in Human Augmentation technology connected to healthcare. To assist medical professionals and improve patient outcomes, this involves the creation of wearable biosensors, smart prosthetic legs, robotic surgical systems and telepresence robots.

Russia-Ukraine War Impact Analysis

Russia and Ukraine play a major role in the supply chain of human augmentation. Russia has its own industrial skills in this area, while Ukraine is an important center for software development and technology outsourcing. The continuous conflicts between the two nations can halt the supply of vital parts and technologies such as processors, sensors and cutting-edge materials that are required for Human Augmentation devices. Manufacturers within the industry experience increased expenditures and production delays as a result of these interruptions.

Technologies for human augmentation usually depend on cooperative efforts between researchers, developers and manufacturers in several nations. Geopolitical tensions could make it difficult for these partnerships to occur, which would impact R&D projects and slow down the industry's rate of innovation.

The companies and research institutes participating in Human Augmentation may need to reevaluate their research and development goals in light of the geopolitical tensions and possible interruptions to the supply chain. To reduce the dangers brought on by the war, this includes diversifying supply chains, making investments in different technologies or production sites and looking into new collaborations.

By Type

  • In-Built
  • Wearable

By Product

  • Body Worn
  • Non-body Worn

By Technology

  • Wearable
  • Virtual Reality
  • Augmented Reality
  • Exoskeleton
  • Intelligent Virtual Assistants
  • Others

By Application

  • Medical
  • HealthCare
  • Defense
  • Industrial
  • Others

By End-User

  • Pulp & Paper
  • Water Treatment
  • Food & Beverage
  • Agrochemical
  • Household & Cleaning
  • Chemical Processing
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On May 04, 2021, Kanverse.ai launched a next-generation Human Augmentation platform and launched an intelligent document processing product in the market. Kanverse Intelligent Document Processing is developed on the foundation of the Kanverse Human Augmentation platform. The comprehensive solution integrates Artificial Intelligence (AI) with Optical Character Recognition, a Business Rule Framework and Automation capabilities.
  • On December 21, 2023, NTT DOCOMO, INC. announced the world's first technology that utilizes a human-augmentation platform for sharing taste perceptions between people. The solution integrates DOCOMO's human augmentation platform with technology from Miyashita Laboratory and H2L to replicate tastes.
  • On November 09, 2023, Phantom Neuro announced its solution to outdated medical standard communications technologies through a first-of-its-kind merging of IoT Wi-Fi and implantable medical systems.

Why Purchase the Report?

  • To visualize the global human augmentation market segmentation based on type, product, technology, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of human augmentation market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global human augmentation market report would provide approximately 78 tables, 80 figures and 246 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Product
  • 3.3. Snippet by Technology
  • 3.4. Snippet by Application
  • 3.5. Snippet by End-User
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Defence and Military
      • 4.1.1.2. Growing Manufacturing Industry
    • 4.1.2. Restraints
      • 4.1.2.1. High Cost of the Technology
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. In-Built*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Wearable

8. By Product

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 8.1.2. Market Attractiveness Index, By Product
  • 8.2. Body Worn*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Non-body Worn

9. By Technology

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.1.2. Market Attractiveness Index, By Technology
  • 9.2. Wearable*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Virtual Reality
  • 9.4. Augmented Reality
  • 9.5. Exoskeleton
  • 9.6. Intelligent Virtual Assistants
  • 9.7. Others

10. By Application

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.1.2. Market Attractiveness Index, By Application
  • 10.2. Medical*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. HealthCare
  • 10.4. Defense
  • 10.5. Industrial
  • 10.6. Others

11. By End-User

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.1.2. Market Attractiveness Index, By End-User
  • 11.2. Pulp & Paper*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Water Treatment
  • 11.4. Food & Beverage
  • 11.5. Agrochemical
  • 11.6. Household & Cleaning
  • 11.7. Chemical Processing
  • 11.8. Others

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. UK
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Spain
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia-Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia-Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 12.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. SAMSUNG*
    • 14.1.1. Company Overview
    • 14.1.2. Product Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. Panasonic Corporation
  • 14.3. Microsoft
  • 14.4. TOYOTA MOTOR CORPORATION
  • 14.5. General Motors
  • 14.6. Google
  • 14.7. FOSSIL GROUP
  • 14.8. Raytheon Technologies Corporation
  • 14.9. Life Sense Group
  • 14.10. Garmin Ltd

LIST NOT EXHAUSTIVE

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us