封面
市场调查报告书
商品编码
1448007

植物活化剂市场 - 2023-2030

Plant Activators Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 209 Pages | 商品交期: 约2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

概述

全球植物活化剂市场2022年达到9.024亿美元,预计2030年将达到13.9543亿美元,2023-2030年预测期间CAGR为5.6%。

植物活化剂是生物作物保护这一更广泛趋势的一部分。它们增强植物的天然免疫系统,增强其对病虫害的抵抗力。这与害虫综合防治 (IPM) 技术的更广泛趋势一致。 2022年4月,科莱恩推出无人机喷洒用漂移控製剂和生物活化剂

源自植物萃取物和微生物等天然来源的生物植物活化剂因其对环境影响较小且与害虫综合治理 (IPM) 技术相容而受到关注。例如,Gowan公司提供的一种植物生物活化剂Siapton,由游离胺基酸和短链胜肽组成。此活化剂可提高所有条件下的产量水平,并减少胁迫条件下的产量损失。

干旱、极端温度和盐度等非生物胁迫的发生越来越多,导致人们更加重视增强压力耐受性和提高植物恢復能力的植物活化剂。因此,对非生物胁迫的日益关注正在推动植物活化剂市场的成长。对传统化学品替代品的需求不断增长是植物活化剂市场成长的主要趋势。

动力学

各种生物和非生物胁迫导致作物产量损失

生物胁迫是由害虫、疾病和杂草等生物体引起的,而非生物胁迫是由干旱、极端温度和土壤盐分等非生物因素引起的。这些压力可能对作物产量和品质产生深远影响,导致农民遭受重大经济损失和粮食供应链中断。根据 MDPI,非生物胁迫会严重降低作物生产性能,作物产量损失 50% 至 70%

植物活化剂在减轻这些损失和推动市场成长方面发挥着至关重要的作用。植物活化剂刺激植物的自然防御机制,使它们对虫害和疾病等生物胁迫更有抵抗力。它们可以诱导抗菌化合物和酵素的产生,帮助植物抵抗病原体。

资源和耕地减少,农业生产需求增加

随着资源和耕地的减少,农业生产的需求不断增加,正在推动植物活化剂市场的成长。根据世界银行的数据,印度农业用地占土地总面积的比例从 2015 年的 60. 4% 增至 2020 年的 60.2%。世界人口增加,耕地面积减少,提高农业生产的需求日益增长。植物活化剂透过提高作物产量、品质和復原力来应对这项挑战

由于耕地有限,利用可用空间最大限度地提高农作物产量变得至关重要。植物活化剂促进有效的养分吸收和利用,增加生物量和提高产量。透过改善植物的健康和活力,活化剂可以帮助植物充分发挥生长潜力。水和养分等稀缺资源可能导致干旱和养分缺乏等非生物胁迫状况。植物活化剂增强植物耐受性和适应这些压力的能力,因此即使在不利条件下也能维持作物生产力。

政府规章

政府法规确实可以限制植物活化剂市场的成长。与其他农业化学品类似,植物活化剂必须经过漫长而复杂的註册审批程序才能合法销售和使用。此过程包括提交有关产品功效、安全性和环境影响的大量资料,这对于製造商来说可能既耗时又昂贵。

如果指导方针没有正确维护,那么政府可以禁止该产品。根据 1968 年农药法规,该法案允许各州在出现安全问题时禁用农药 60 天,在某些情况下可延长 30 天

目录

目录

第 1 章:方法与范围

  • 研究方法论
  • 报告的研究目的和范围

第 2 章:定义与概述

第 3 章:执行摘要

  • 来源片段
  • 按作物摘录
  • 按表格列出的片段
  • 按功能分類的片段
  • 按配销通路分類的片段
  • 按申请模式分類的片段
  • 按地区分類的片段

第 4 章:动力学

  • 影响因素
    • 司机
      • 各种生物和非生物胁迫导致作物产量损失
      • 资源和耕地减少,农业生产需求增加
    • 限制
      • 政府规章
    • 机会
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析

第 6 章:COVID-19 分析

  • COVID-19 分析
    • 新冠疫情爆发前的情景
    • 新冠疫情期间的情景
    • 新冠疫情后的情景
  • COVID-19 期间的定价动态
  • 供需谱
  • 疫情期间政府与市场相关的倡议
  • 製造商策略倡议
  • 结论

第 7 章:按来源

  • 生物
  • 化学

第 8 章:依作物分类

  • 水果和蔬菜
    • 莓果
    • 柑橘类水果
    • 仁果
    • 根茎类蔬菜
    • 叶菜类蔬菜
    • 其他的
  • 谷物及谷物
    • 小麦
    • 玉米
    • 其他的
  • 油籽和豆类
    • 棉籽
    • 大豆
    • 向日葵和油菜籽
    • 其他的
  • 草坪和观赏植物

第 9 章:按形式

  • 解决方案
  • 水分散性和水溶性颗粒
  • 可湿性粉剂

第 10 章:按功能

  • 抗病性
  • 成长强化
  • 产量提高
  • 抗压能力

第 11 章:按配销通路

  • 电子商务
  • 大型超市/超市
  • 专卖店
  • 其他的

第 12 章:依申请方式

  • 叶面喷施
  • 土壤处理
  • 种子处理
  • 躯干注射
  • 土壤淋水
  • 其他的

第 13 章:按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 俄罗斯
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第14章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 15 章:公司简介

  • Syngenta AG
    • 公司简介
    • 产品组合和描述
    • 财务概览
    • 最近的发展
  • BASF SE
  • Certis USA LLC
  • Futureco Bioscience
  • Gowan Company
  • Nutriag USA Ltd.
  • Eagle Plant Protect Private Limited.
  • Jaivik Crop Care LLP
  • UPL
  • NIHON NOHYAKU CO., LTD

第 16 章:附录

简介目录
Product Code: AG8030

Overview

Global Plant Activators Market reached US$ 902.4 million in 2022 and is expected to reach US$ 1,395.43 million by 2030, growing with a CAGR of 5.6% during the forecast period 2023-2030.

Plant activators are part of the broader trend toward biological crop protection. They boost the plant's natural immune system, increasing its resilience to pests and disease. This aligns with the broader trends toward integrated pest control (IPM) techniques. In April 2022, Clariant launched Drift Control Agent and Biological Activator for drone spraying

Biological plant activators derived from natural sources, such as plant extracts and microorganisms, have gained traction due to their lower environmental effect and compatibility with integrated pest management (IPM) techniques. For instance, a plant bio-activator provided by Gowan Company, Siapton, is consisting of balance-free amino acids and short-chain peptides. This activator improves yield levels under all conditions and reduces yield losses under stress conditions.

Increasing occurrences of abiotic stresses such as drought, extreme temperatures, and salinity have led to a greater emphasis on plant activators that enhance stress tolerance and improve plant resilience. Hence, the rising focus on abiotic stress is driving the plant activator market growth. The rising demand for alternatives to conventional chemicals acts as a key trend in plant activator market growth.

Dynamics

Loss of Crop Production due to Various Biotic and Abiotic Stress

Biotic stresses are caused by living organisms such as pests, diseases, and weeds, while abiotic stresses result from non-living factors like drought, extreme temperatures, and soil salinity. These stresses can have a profound impact on crop yields and quality, leading to substantial economic losses for farmers and food supply chain disruptions. According to MDPI, Abiotic stresses can strongly reduce crop performance, with crop yield losses ranging from 50% to 70%

Plant activators play a crucial role in mitigating these losses and driving market growth. Plant activators stimulate the plant's natural defense mechanisms, making them more resilient to biotic stresses like insect pests and diseases. They can induce the production of antimicrobial compounds and enzymes, helping plants fend off pathogens.

Increasing Demand For Agricultural Production with Decreasing Resources and Arable Land

The increasing demand for agricultural production with decreasing resources and arable land is driving the growth of the plant activators market. According to World Bank, in India, in 2020 agricultural land was 60.2% of total land where it was 60. 4% in 2015. the world's population rises and the amount of arable land decreases., there is a growing need for enhancing agricultural production. Plant activators contribute to addressing this challenge by improving crop yield, quality, and resilience

With limited arable land, it becomes crucial to maximize crop yield from the available space. Plant activators promote efficient nutrient uptake and utilization, leading to increased biomass and better yield. By improving plant health and vigor, activators help plants achieve their full growth potential. Scarce resources, such as water and nutrients, can lead to abiotic stress conditions like drought and nutrient deficiency. Plant activators enhance a plant's ability to tolerate and adapt to these stresses, thereby maintaining crop productivity even under adverse conditions.

Government Regulations

Government regulations can indeed act as a restraint on the growth of the plant activators market. Similar to other agrochemicals, plant activators must go through a lengthy and complex registration and approval process to be legally sold and used. This process includes submitting extensive data on product efficacy, safety, and environmental impact, which can be time-consuming and expensive for manufacturers.

If the guidelines are not maintained properly, then the government can ban the product. As per pesticide regulation in 1968, which act permits states to ban a pesticide for 60 days if a safety concern arises, with 30-day extensions in some cases

Segment Analysis

The global plant activators market is segmented based on source, crop, form, function, distribution channel, mode of application and region.

Rising Demand for Biological Products in Agriculture

Biological plant activators are often derived from natural sources, such as plant extracts, beneficial microorganisms, and naturally occurring compounds. These sources are perceived as more sustainable and environmentally friendly compared to synthetic chemical alternatives, aligning with consumer and regulatory demands for greener agricultural practices.

Biological plant activators typically leave fewer chemical residues on crops compared to synthetic chemicals. This characteristic appeals to consumers who are concerned about the safety of pesticide residues in their food. In April 2022, Clariant launched Drift Control Agent and Biological Activator for drone spraying

Source: DataM Intelligence Analysis (2023)

Geographical Penetration

Europe's Growing Crop Loss due to Climate Change

Europe has a wide range of crops grown across various climates and regions. But climate change causes various abiotic stress to plants and leads to crop loss. Maize, sunflower and soya bean yields are forecast by the EU to drop by about 8% to 9 % due to hot weather across the continent. Europe's heat and drought crop losses are tripled in 50 years. Plant activators can be applied to different types of crops, addressing specific challenges faced by European farmers and supporting the growth of the market.

European consumers and governments have shown increasing interest in sustainable and organic farming practices. Plant activators align with these preferences by offering a way to enhance crop yields and protect plants using natural defense mechanisms, rather than relying solely on synthetic chemicals.

Source: DataM Intelligence Analysis (2023)

Competitive Landscape

The major global players include Syngenta AG, BASF SE, Certis USA L.L.C, Futureco Bioscience, Gowan Company, Nutriag USA Ltd, Eagle Plant Protect Private Limited, Jaivik Crop Care LLP, UPL and NIHON NOHYAKU CO., LTD.

COVID-19 Impact Analysis

COVID Impact

The pandemic led to disruptions in global supply chains, affecting the production and distribution of agricultural inputs, including plant activators. Restrictions on movement, labor shortages, and transportation challenges have impacted the agricultural sector, as a result, there is a lesser demand for plant activators which restraints its market growth during the pandemic.

By Source

  • Biological
  • Chemical

By Crop

  • Fruits & Vegetables
    • Berries
    • Citrus Fruits
    • Pome Fruits
    • Root & Tuber Vegetables
    • Leafy Vegetables
    • Others
  • Cereals & Grains
    • Wheat
    • Rice
    • Corn
    • Others
  • Oilseeds & Pulses
    • Cotton Seed
    • Soybean
    • Sunflower & Rapeseed
    • Others
  • Turf & Ornamentals

By Form

  • Solutions
  • Water-Dispersible and Water-Soluble Granules
  • Wettable Powders

By Function

  • Disease Resistance
  • Growth Enhancement
  • Yield Improvement
  • Stress Tolerance

By Distribution Channel

  • E-Commerce
  • Hypermarket/Supermarket
  • Specialty Stores
  • Others

By Mode of Application

  • Foliar Spray
  • Soil Treatment
  • Seed Treatment
  • Trunk Injection
  • Soil Drenching
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In June 2023, Grace Breeding announced Brazil's field test results of its promagen(WDS bio-activator) in soybean plants demonstrating boosted yields. Results showed that using Grace Breeding's ProMagen in soybean plants there was both higher resilience and tolerance as well as higher yield produced.
  • In December 2022, Bayer, a life science company, launched Ambition, its new amino acid biostimulant to the Chinese market. Ambition can stimulate the natural activity of plants.

Why Purchase the Report?

  • To visualize the global plant activators market segmentation based on source, crop, form, function, distribution channel, mode of application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of plant activators market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global plant activators market report would provide approximately 85 tables, 92 figures and 309Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Source
  • 3.2.Snippet by Crop
  • 3.3.Snippet by Form
  • 3.4.Snippet by Function
  • 3.5.Snippet by Distribution Channel
  • 3.6.Snippet by Mode of Application
  • 3.7.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Loss of Crop Production Due to Various Biotic and Abiotic Stress
      • 4.1.1.2.Increasing Demand for Agricultural Production with Decreasing Resources and Arable Land
    • 4.1.2.Restraints
      • 4.1.2.1.Government Regulations
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID
    • 6.1.2.Scenario During COVID
    • 6.1.3.Scenario Post COVID
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Source

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Source
    • 7.1.2.Market Attractiveness Index, By Source
  • 7.2.Biological*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Chemical

8.By Crop

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 8.1.2.Market Attractiveness Index, By Crop
  • 8.2.Fruits & Vegetables*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 8.2.3.Berries
    • 8.2.4.Citrus Fruits
    • 8.2.5.Pome Fruits
    • 8.2.6.Root & Tuber Vegetables
    • 8.2.7.Leafy Vegetables
    • 8.2.8.Others
  • 8.3.Cereals & Grains
    • 8.3.1.Wheat
    • 8.3.2.Rice
    • 8.3.3.Corn
    • 8.3.4.Others
  • 8.4.Oilseeds & Pulses
    • 8.4.1.Cotton Seed
    • 8.4.2.Soybean
    • 8.4.3.Sunflower & Rapeseed
    • 8.4.4.Others
  • 8.5.Turf & Ornamentals

9.By Form

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Form
    • 9.1.2.Market Attractiveness Index, By Form
  • 9.2.Solutions*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Water-Dispersible and Water-Soluble Granules
  • 9.4.Wettable Powders

10.By Function

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Function
    • 10.1.2.Market Attractiveness Index, By Function
  • 10.2.Disease Resistance*
    • 10.2.1.Introduction
    • 10.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3.Growth Enhancement
  • 10.4.Yield Improvement
  • 10.5.Stress Tolerance

11.By Distribution Channel

  • 11.1.Introduction
    • 11.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 11.1.2.Market Attractiveness Index, By Distribution Channel
  • 11.2.E-Commerce*
    • 11.2.1.Introduction
    • 11.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3.Hypermarket/Supermarket
  • 11.4.Specialty Stores
  • 11.5.Others

12.By Mode of Application

  • 12.1.Introduction
    • 12.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Mode of Application
    • 12.1.2.Market Attractiveness Index, By Mode of Application
  • 12.2.Foliar Spray*
    • 12.2.1.Introduction
    • 12.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 12.3.Soil Treatment
  • 12.4.Seed treatment
  • 12.5.Trunk injection
  • 12.6.Soil drenching
  • 12.7.Others

13.By Region

  • 13.1.Introduction
    • 13.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 13.1.2.Market Attractiveness Index, By Region
  • 13.2.North America
    • 13.2.1.Introduction
    • 13.2.2.Key Region-Specific Dynamics
    • 13.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Source
    • 13.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 13.2.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Form
    • 13.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Function
    • 13.2.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 13.2.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Mode of Application
    • 13.2.9.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.2.9.1.U.S.
      • 13.2.9.2.Canada
      • 13.2.9.3.Mexico
  • 13.3.Europe
    • 13.3.1.Introduction
    • 13.3.2.Key Region-Specific Dynamics
    • 13.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Source
    • 13.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 13.3.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Form
    • 13.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Function
    • 13.3.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 13.3.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Mode of Application
    • 13.3.9.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.3.9.1.Germany
      • 13.3.9.2.UK
      • 13.3.9.3.France
      • 13.3.9.4.Italy
      • 13.3.9.5.Russia
      • 13.3.9.6.Rest of Europe
  • 13.4.South America
    • 13.4.1.Introduction
    • 13.4.2.Key Region-Specific Dynamics
    • 13.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Source
    • 13.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 13.4.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Form
    • 13.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Function
    • 13.4.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 13.4.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Mode of Application
    • 13.4.9.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.4.9.1.Brazil
      • 13.4.9.2.Argentina
      • 13.4.9.3.Rest of South America
  • 13.5.Asia-Pacific
    • 13.5.1.Introduction
    • 13.5.2.Key Region-Specific Dynamics
    • 13.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Source
    • 13.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 13.5.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Form
    • 13.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Function
    • 13.5.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 13.5.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Mode of Application
    • 13.5.9.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 13.5.9.1.China
      • 13.5.9.2.India
      • 13.5.9.3.Japan
      • 13.5.9.4.Australia
      • 13.5.9.5.Rest of Asia-Pacific
  • 13.6.Middle East and Africa
    • 13.6.1.Introduction
    • 13.6.2.Key Region-Specific Dynamics
    • 13.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Source
    • 13.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 13.6.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Form
    • 13.6.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Function
    • 13.6.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Distribution Channel
    • 13.6.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Mode of Application

14.Competitive Landscape

  • 14.1.Competitive Scenario
  • 14.2.Market Positioning/Share Analysis
  • 14.3.Mergers and Acquisitions Analysis

15.Company Profiles

  • 15.1.Syngenta AG*
    • 15.1.1.Company Overview
    • 15.1.2.Product Portfolio and Description
    • 15.1.3.Financial Overview
    • 15.1.4.Recent Developments
  • 15.2.BASF SE
  • 15.3.Certis USA L.L.C
  • 15.4.Futureco Bioscience
  • 15.5.Gowan Company
  • 15.6.Nutriag USA Ltd.
  • 15.7.Eagle Plant Protect Private Limited.
  • 15.8.Jaivik Crop Care LLP
  • 15.9.UPL
  • 15.10.NIHON NOHYAKU CO., LTD

LIST NOT EXHAUSTIVE

16.Appendix

  • 16.1.About Us and Services
  • 16.2.Contact Us