封面
市场调查报告书
商品编码
1474072

全球长纤维热塑性塑胶市场 - 2024-2031

Global Long Fiber Thermoplastic Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 205 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

概述

全球长纤维热塑性塑胶市场将于 2023 年达到 42 亿美元,预计到 2031 年将达到 87 亿美元,2024-2031 年预测期间复合年增长率为 9.5%。

新型长纤维热塑性塑胶的开发将继续促进全球市场的成长。例如,2023年11月,美国塑胶製造商PlastiComp宣布开发出一种新型碳纤维增强热塑性复合材料。新型热塑性塑胶将在未来几年商业化。

降低生产成本的困难将继续成为市场成长的主要障碍。即使科学家正在试验生产技术,大规模生产仍然不可行。降低成本对于增加长纤维热塑性塑胶在新工程应用中的采用至关重要。

动力学

持续转向电动车

过去两年,汽车产业越来越多地转向采用电动车。大众、日产、通用和福特等主要汽车製造商正在逐步扩大其电动车阵容,而比亚迪、Fisker Rivian 和特斯拉等纯电动车公司则专注于透过推出新产品来扩大其产品范围。长纤维热塑性塑胶被用来製造各种电动汽车子系统的轻质零件。

印度等市场乘用车销量的成长也将推动汽车对长纤维热塑性塑胶的需求。例如,2024年3月,越南电动车品牌VinFast宣布计画在印度南部建立新的生产设施。新工厂将为国内和出口市场生产车辆。

越来越多地使用徘徊弹药进行战争

俄乌战争双方都在使用徘徊弹药进行杀伤人员和反装甲战。它大大提高了部队执行各种复杂地面行动的能力,而不会在战斗环境中实际危及他们的安全,也不需要昂贵的空对地飞弹。

在巡飞弹药的製造中使用热塑性复合材料具有多种优点。首先,它减轻了弹药的整体重量,使其射程更长;其次,它最大限度地减少了金属部件的使用,使其难以被传统雷达系统检测到。随着越来越多的国家采用巡飞弹药作为其武器库的一部分,这将增加国防设备製造公司对长纤维热塑性塑胶的需求。

加工製造成本高

长纤维热塑性塑胶是透过密集製程製造的,包括最终检查和包装之前的成型、冷却、固化和修整。整个生产过程相对新颖,涉及高度复杂的机械的使用。鑑于其总体产量有限,这导致最终产品的价格上涨。

长纤维热塑性塑胶相对较高的成本仍然是市场成长的绊脚石。儘管已经开发出一些新的经济生产技术,但尚未用于大规模生产。只要长纤维热塑性塑胶的成本仍居高不下,最终用户就会继续青睐更经济的替代品,从而缩小未来成长的范围。

目录

第 1 章:方法与范围

  • 研究方法论
  • 报告的研究目的和范围

第 2 章:定义与概述

第 3 章:执行摘要

  • 树脂片段
  • 纤维片段
  • 按製造工艺分類的片段
  • 最终使用者的片段
  • 按地区分類的片段

第 4 章:动力学

  • 影响因素
    • 司机
      • 持续转向电动车
      • 越来越多地使用徘徊弹药进行战争
    • 限制
      • 加工製造成本高
    • 机会
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

  • COVID-19 分析
    • COVID-19 之前的情况
    • COVID-19 期间的情况
    • COVID-19 后的情景
  • COVID-19 期间的定价动态
  • 供需谱
  • 疫情期间政府与市场相关的倡议
  • 製造商策略倡议
  • 结论

第 7 章:透过树脂

  • 聚丙烯
  • 聚酰胺
  • 聚对苯二甲酸丁二醇酯
  • 其他的

第 8 章:依纤维分类

  • 玻璃
  • 其他的

第 9 章:依製造流程分类

  • 射出成型
  • 拉挤成型
  • 直接LFT
  • 其他的

第 10 章:最终用户

  • 汽车
  • 航太
  • 电气与电子
  • 建筑与施工
  • 运动器材
  • 其他

第 11 章:按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第 12 章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 13 章:公司简介

  • BASF SE
    • 公司简介
    • 产品组合和描述
    • 财务概览
    • 主要进展
  • SABIC
  • Lanxess
  • Avient Corporation
  • Solvay SA
  • Asahi Kasei Corporation
  • Daicel Corporation
  • RTP Company
  • Celanese Corporation
  • Toray Industries, Inc.

第 14 章:附录

简介目录
Product Code: MA8412

Overview

Global Long Fiber Thermoplastics Market reached US$ 4.2 billion in 2023 and is expected to reach US$ 8.7 billion by 2031, growing with a CAGR of 9.5% during the forecast period 2024-2031.

The development of new types of long fiber thermoplastics will continue to augment global market growth. For example, in November 2023, PlastiComp, a U.S.-based manufacturer of plastics, announced the development of a new type of carbon-fiber reinforced thermoplastic composite. New types of thermoplastics will be commercialized in the coming years.

The difficulty in lowering production costs will continue to remain a key handicap for market growth. Even as scientists are experimenting with techniques of production, mass production still remains unfeasible. Lowering costs is essential to increase the adoption of long fiber thermoplastics in new engineering applications.

Dynamics

Ongoing Shift Towards Electric Vehicles

Over the past two years, the automotive industry is increasingly shifting towards the adoption of electric vehicles. Major carmakers like Volkswagen, Nissan, General Motors and Ford are gradually expanding their lineup of electric vehicles, while EV-exclusive companies like BYD, Fisker Rivian and Tesla are focused on expanding their product range with new launches. Long fiber thermoplastics are being used to manufacture lightweight components for various EV subsystems.

The growth in passenger vehicle sales in markets like India, will also boost automotive demand for long fiber thermoplastics. For instance, in March 2024, VinFast, a Vietnamese EV brand, announced plans to establish a new production facility in southern India. The new facility will construct vehicles for the domestic and export market.

Increasing Usage of Loitering Munitions for Warfare

Both sides in the Russia-Ukraine war are using loitering munitions for anti-personnel and anti-armour warfare. It greatly improves the ability of troops to carry out various complex ground operations without actually endangering their safety in a combat environment and without needing expensive air-to-ground missiles.

The usage of thermoplastic composites in the construction of loitering munitions offers various advantages. Firstly, it reduces the overall weight of the munition, giving it longer range and secondly, it minimizes the usage of metal parts, rendering it difficult to detect by traditional radar systems. As more countries adopt loitering munitions as part of their arsenal, it will boost the demand for long fiber thermoplastics from defence equipment manufacturing companies.

High Cost of Processing and Manufacturing

Long fiber thermoplastics are manufactured through an intensive process that involves molding, cooling, curing and trimming before final inspection and packaging. The entire production process is relative novel and involves the usage of highly complex machinery. Given its overall limited production, it leads to increased prices for the final product.

The relatively high cost of long fiber thermoplastics remains a stumbling block for market growth. Alhtough some new economical production techniques have been developed, they are yet to be adopted for mass production. As long as the cost of long fiber thermoplastics remains high, end-users will continue to favor more economical alternatives, thus reducing the scope of future growth.

Segment Analysis

The global long fiber thermoplastics market is segmented based on resin, fiber, manufacturing process, application, end-user and region.

The Automotive Industry Will Continue to be a Leading End-user

The global automotive industry is currently shifting towards the adoption of electric and hybrid vehicles. As such, the main priority for automakers is to ensure that electric vehicles are more lightweight and have longer range capacity. Therefore, most automakers are expanding the usage of long fiber thermoplastics for achieving targeted weight reduction.

The thermoplastics are also witnessing a surge in adoption in the aerospace industry, particularly in the manufacturing of unmanned aerial vehicles (UAV) for reconnaissance and combat applications. With drones taking over many of the tasks traditionally reserved for manned aircrafts, their usage in the aerospace industry will increase over the upcoming years.

Geographical Penetration

Asia-Pacific Will Have the Largest Market Share

Asia-Pacific will have the largest share in the global market, given China's lead in the development of electric vehicles. In 2023, China overtook Japan to become the largest automotive exporter in the world. Chinese automakers are having state backing and are looking to enter new export markets in Africa and South America. The demand for long fiber thermoplastics will only continue to increase in the future.

In recent years, many multinational companies have become vary of increasing geopolitical tensions with China and are opting to outsource their production facilities to India. The country has had notable success in attracting electronics manufacturers to up production centers. The shifting of electronics production to India will give rise to new growth opportunities for the market in Asia-Pacific.

COVID-19 Impact Analysis

Fulfilling existing contracts was a major challenge for long fiber thermoplastic manufacturers during the pandemic period. Lockdowns and labor shortages had led to major production hiccups, leaving many producers incapable of supplying their clients. As the pandemic progressed, demand from automotive and aerospace sectors reduced sharply due to a virtual halt of the global transportation industry.

Although the pandemic era witnessed a decline in sales, it was more down to supply chain constraints rather than a natural decline in demand. Demand rose sharply in the initial weeks and months of the post-pandemic period as manufacturers struggled to keep pace. Companies are now focused on developing new thermoplastic materials to aid their growth. Overall, the pandemic is unlikely to have any negative implications on the long term growth of the global market.

Russia-Ukraine War Impact Analysis

The war in Ukraine created significant demand for long fiber thermoplastics for defence applications, particularly for the production of FPV drones and loitering munitions. Both Ukraine and Russia have upped defence equipment production, to replenish depleted stocks and create reserves of equipment for future offensive operations.

The sanctions imposed by U.S. and EU on the Russian market have cut off access to western-made thermoplastics. Therefore, to fulfill wartime contract obligations, many Russian defence enterprises have resorted to grey market imports and Chinese suppliers to fill gaps left by western sanctions. The Russian government has also provided financial backing to increase domestic production of long fiber thermoplastics.

By Resin

  • Polypropylene
  • Polyamide
  • Polybutylene Terephthalate
  • Others

By Fiber

  • Glass
  • Carbon
  • Others

By Manufacturing Process

  • Injection Molding
  • Pultrusion
  • Direct-LFT
  • Others

By End-User

  • Automotive
  • Aerospace
  • Electrical & Electronics
  • Buildings & Construction
  • Sporting Equipment
  • Other

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In February 2024, scientists from the African University of Science and Technology in Nigeria published a research paper exploring the possibility of using lignocellulosic reinforced thermoplastics for the production of lightweight automotive components.
  • In October 2023, SABIC, Saudi Arabia's state-owned petrochemicals producer, unveiled an automotive body panel made from low pressure compression molding technology, using a proprietary long fiber thermoplastic material.
  • In January 2024, PlastiComp, U.S.-based developer of plastic composites, commissioned a new R&D lab at its main office in Winona, Minnesota, U.S. The new lab will conduct research into the next generation of long fiber thermoplastics.

Competitive Landscape

The major global players in the market include BASF SE, SABIC, Lanxess, Avient Corporation, Solvay SA, Asahi Kasei Corporation, Daicel Corporation, RTP Company, Celanese Corporation and Toray Industries, Inc.

Why Purchase the Report?

  • To visualize the global long fiber thermoplastics market segmentation based on resin, fiber, manufacturing process, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of long fiber thermoplastics market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global long fiber thermoplastics market report would provide approximately 70 tables, 68 figures and 205 Pages.

Target Audience 2024

  • Automotive Companies
  • Aerospace Companies
  • Electronic Manufacturers
  • Industry Investors/Investment Bankers
  • Research Professionals

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Resin
  • 3.2.Snippet by Fiber
  • 3.3.Snippet by Manufacturing Process
  • 3.4.Snippet by End-User
  • 3.5.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Ongoing Shift Towards Electric Vehicles
      • 4.1.1.2.Increasing Usage of Loitering Munitions for Warfare
    • 4.1.2.Restraints
      • 4.1.2.1.High Cost of Processing and Manufacturing
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID-19
    • 6.1.2.Scenario During COVID-19
    • 6.1.3.Scenario Post COVID-19
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Resin

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin
    • 7.1.2.Market Attractiveness Index, By Resin
  • 7.2.Polypropylene*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Polyamide
  • 7.4.Polybutylene Terephthalate
  • 7.5.Others

8.By Fiber

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber
    • 8.1.2.Market Attractiveness Index, By Fiber
  • 8.2.Glass*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Carbon
  • 8.4.Others

9.By Manufacturing Process

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 9.1.2.Market Attractiveness Index, By Manufacturing Process
  • 9.2.Injection Molding*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Pultrusion
  • 9.4.Direct-LFT
  • 9.5.Others

10.By End-User

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2.Market Attractiveness Index, By End-User
  • 10.2.Automotive*
    • 10.2.1.Introduction
    • 10.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3.Aerospace
  • 10.4.Electrical & Electronics
  • 10.5.Buildings & Construction
  • 10.6.Sporting Equipment
  • 10.7.Other

11.By Region

  • 11.1.Introduction
    • 11.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2.Market Attractiveness Index, By Region
  • 11.2.North America
    • 11.2.1.Introduction
    • 11.2.2.Key Region-Specific Dynamics
    • 11.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin
    • 11.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber
    • 11.2.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1.U.S.
      • 11.2.7.2.Canada
      • 11.2.7.3.Mexico
  • 11.3.Europe
    • 11.3.1.Introduction
    • 11.3.2.Key Region-Specific Dynamics
    • 11.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin
    • 11.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber
    • 11.3.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1.Germany
      • 11.3.7.2.UK
      • 11.3.7.3.France
      • 11.3.7.4.Italy
      • 11.3.7.5.Spain
      • 11.3.7.6.Rest of Europe
  • 11.4.South America
    • 11.4.1.Introduction
    • 11.4.2.Key Region-Specific Dynamics
    • 11.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin
    • 11.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber
    • 11.4.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1.Brazil
      • 11.4.7.2.Argentina
      • 11.4.7.3.Rest of South America
  • 11.5.Asia-Pacific
    • 11.5.1.Introduction
    • 11.5.2.Key Region-Specific Dynamics
    • 11.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin
    • 11.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber
    • 11.5.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1.China
      • 11.5.7.2.India
      • 11.5.7.3.Japan
      • 11.5.7.4.Australia
      • 11.5.7.5.Rest of Asia-Pacific
  • 11.6.Middle East and Africa
    • 11.6.1.Introduction
    • 11.6.2.Key Region-Specific Dynamics
    • 11.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin
    • 11.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber
    • 11.6.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.6.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12.Competitive Landscape

  • 12.1.Competitive Scenario
  • 12.2.Market Positioning/Share Analysis
  • 12.3.Mergers and Acquisitions Analysis

13.Company Profiles

  • 13.1.BASF SE*
    • 13.1.1.Company Overview
    • 13.1.2.Product Portfolio and Description
    • 13.1.3.Financial Overview
    • 13.1.4.Key Developments
  • 13.2.SABIC
  • 13.3.Lanxess
  • 13.4.Avient Corporation
  • 13.5.Solvay SA
  • 13.6.Asahi Kasei Corporation
  • 13.7.Daicel Corporation
  • 13.8.RTP Company
  • 13.9.Celanese Corporation
  • 13.10.Toray Industries, Inc.

LIST NOT EXHAUSTIVE

14.Appendix

  • 14.1.About Us and Services
  • 14.2.Contact Us