封面
市场调查报告书
商品编码
1529367

全球正极材料市场 - 2024-2031

Global Cathode Materials Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 200 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

全球正极材料市场概况

2023年全球正极材料市场规模为285.6亿美元,预估至2031年将达769.9亿美元,预测期间(2024-2031年)复合年增长率为13.2%。

锂和金属构成阴极的活性成分。根据金属的类型及其比例,活性材料具有不同的特性。 Ni(镍)具有高容量,Mn(锰)和Co(钴)具有高安全性,Al(铝)可增强电池的功率。 Mg:Ag (10:1)、LiF 和 Mg:Al 是最常用的阴极。阴极通常由铝 (Al) 製成,但也研究了 MgO、CsF、Al2O3 和 NaCl 等替代绝缘层,以改善电子注入。锂(离子)和钠(离子)阴极材料与经典LIB和SIB(分别为锂离子和钠离子电池)中使用的材料相同。

正极材料是一种电池,可以将电能储存在能量中,然后在需要时将其转换为电能。正极材料由正极、负极和溶液三大部分组成。在石化过程中,阴极定义了电池的端电压正极,而电极则从外部电路获取电子。

正极材料由磷酸铁锂、钴酸锂、镍锰钴锂和二氧化铅组成。金属-绝缘体转变、电荷排序和协同 Jahn-Teller 畸变只是这些材料所表现出的显着物理现象的一小部分。控制阴极材料的局部动态和结构行为对于开发具有创新功能的客製化储能装置至关重要。

全球正极材料市场动态

便携式电子产品、固定式储能和电动车的使用不断增加,推动了对正极材料的更大需求。具有高能量密度、放电能力和快速充电能力的锂离子电池越来越受欢迎。

锂离子电池用于各种用途的趋势

锂离子电池在笔记型电脑、平板电脑、手机、数位相机和其他类似设备等便携式电子配件和设备中的使用越来越多,正在推动这些应用中的电池成长,从而导致对正极材料的需求增加。在消费性电子和汽车产业的启动、照明和点火应用中,电池的使用量正在稳步增加。此外,用于汽车、船舶和机车的混合动力和电动引擎的发展正在增加运输业对电池的需求。

由于这一发展,全世界对正极材料的需求急剧增加。电池的另一个应用是家庭、企业和工业的备用电源,以及维持电网和电信塔的不间断供电。随着电力产业现代化、城镇化和智慧城市的发展,预计短期内对电池和正极材料的需求将稳定成长。

节能需求不断成长

在预测期内,储能应用可能会增加产品消耗。消费性电子产品、电动工具、堆高机、电信、ESS、UPS 和运输都是电池的常见用途。对停电及其对工业运作影响的担忧刺激了对不间断供电系统的需求。化学、製造、石油和天然气以及医疗保健只是其中的几个行业。从传统能源向替代能源的持续转变以及对节能的不断增长的需求预计将加速先进储能係统的使用。

智慧电网和再生能源趋势的日益普及预计将增加对这些系统的需求。为提高 ESS 正极材料(包括锂、钠和镍)的效率而进行的长期持续研发预计将为原料製造商提供重要前景。正极材料市场参与者对永续电池材料采购、回收和废弃物处理的认识不断提高,对于优化跨地区的生产和处理路线具有重要意义。

原料安全、成本高

产能有限、生产能耗高、安全问题和原料成本高都是无机正极材料常用的缺点。因此,需要具有更高比容量、更高安全特性和更丰富自然资源的绿色和永续正极材料。活动期间对正极材料安全性的日益增长的需求阻碍了市场的扩张。

COVID-19 影响分析

受COVID-19疫情影响,全球正极材料市场受到严重影响。然而,在预测期内,电池在储存和运输方面严格的安全规定以及COVID-19疫情造成的恶劣条件预计将阻碍正极材料市场的成长。

随着疫情对需求的负面影响蔓延至中国电池和正极材料生产商,预计中国5月对日本和韩国的LCO材料出口订单将减少,对印度的LCO电池出口订单预计将减少。

全球正极材料细分市场分析

以电池来看,正极材料市场分为锂离子、铅酸等。

铅酸占据最大份额。

在锂离子电池中,正极材料是影响电池能量密度最重要的组成部分。电池电压或电池容量用于计算此能量密度。锂离子电池的工作机制是基于嵌入和脱嵌化学物质。来自阴极的锂离子在充电过程中进入阳极并在放电过程中退出,阳极的结构变化可以忽略不计。

所使用的阴极材料由多种特性决定,包括电池电压、容量、能量和功率能力、循环寿命和工作温度。锂离子电池的阴极使用钴、锰、磷酸盐、镍钴锰(NCM OR NMC)、磷酸铁锂(LFP)和其他矿物质。由于可靠性和相容性的提高,对锂离子电池的需求增加,从而刺激了对正极材料的需求。此外,由于锂离子电池应用数量的扩大,该产业也得到了发展。

全球正极材料市场地域分析

最大份额由亚太公司持有。

技术进步正在导致这些设施中的储能係统激增,预计这将在未来几年推动对阴极材料的需求。在整个预测期内,亚太地区预计将成为全球主要的收入提供者。汽车、消费性电子产品、电动工具和储能係统等各行业电池的使用不断增加,可能会增加对正极材料的需求。

电动车在中国等国家的日益普及可能会增加对正极材料的需求。高能量密度、放电能力和快速充电是锂离子电池的优势,中国、印度和越南等国家智慧型装置和其他消费性电子产品市场的不断增长也是如此。除了生产之外,中国由于其大规模的电子和汽车製造而成为电池的主要用户。

俄罗斯-乌克兰战争影响

俄罗斯和乌克兰在锂、钴、镍、锰等关键材料生产中发挥重要作用,但由于战争,材料生产受到影响。因此,原材料的生产成本增加,导致正极材料的价格上涨。由于生产成本增加,正极材料的品质下降。

由于这场衝突,政府的严厉政策和贸易政策影响了正极材料市场的成长。经济不稳定和成本波动影响了正极材料市场的整体需求。各国之间存在贸易限制,限制了正极材料的进出口。由于衝突,研究人员和科学家之间的合作似乎也受到了打击。

透过电池

  • 锂离子
  • 铅酸
  • 其他的

按材质

  • 磷酸铁锂 (LFP)
  • 钴酸锂 (LCO)
  • 锂镍锰钴 (NMC)
  • 锂镍钴铝 (NCA)
  • 锰酸锂 (LMO)
  • 二氧化铅
  • 其他

按地区

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 俄罗斯
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

主要进展

  • 2024年2月,POSCO宣布在光阳建造全球最大的电瓶正极工厂群,用于生产镍钴铝(NCA)电瓶正极材料。该工厂将拥有52,500吨正极材料的生产能力。
  • 2023年12月,LG化学在美国田纳西州动工兴建美国最大的正极工厂,年产能为6万吨。
  • 2023年10月,优美科宣布透过提高其位于加拿大安大略省工厂的正极活性材料(CAM)和前体正极活性材料(PCAM)产能来扩大其电动车(EV)电池材料生产。
  • 2023年4月20日,OCSiAL推出了两种用于阳极和阴极应用的高浓度石墨烯奈米管,提供具有成本效益的可持续电池解决方案,包括多壁奈米碳管和炭黑。
  • 2023 年 5 月 1 日,卡博特公司推出了用于锂离子电池的 ENTERA 气凝胶颗粒,旨在为电动车开发超薄隔热层。 ENTERA 产品被电池和电动车製造商使用,提供热管理解决方案。
  • 2023年5月22日,国轩高科推出了L600 Astroinno电池组,号称是首款续航力高达1,000公里的非三元电池。

目录

目录

第 1 章:方法与范围

第 2 章:定义与概述

第 3 章:执行摘要

第 4 章:动力学

  • 影响因素
    • 司机
      • 电动车日益普及
      • 对永续和高效能储能解决方案的需求不断增长
    • 限制
      • 政府严格监管
      • 成本和健康危害
    • 机会
    • 影响分析

第 5 章:产业分析

  • 波特五力分析
  • 供应链分析
  • 定价分析
  • 监管分析
  • 俄乌战争影响分析
  • DMI 意见

第 6 章:COVID-19 分析

第 7 章:透过电池

  • 锂离子
  • 铅酸
  • 其他的

第 8 章:按材料

  • 磷酸铁锂 (LFP)
  • 钴酸锂 (LCO)
  • 锂镍锰钴 (NMC)
  • 锂镍钴铝 (NCA)
  • 锰酸锂 (LMO)
  • 二氧化铅
  • 其他

第 9 章:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 俄罗斯
    • 西班牙
    • 欧洲其他地区
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地区
  • 亚太
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 亚太其他地区
  • 中东和非洲

第 10 章:竞争格局

  • 竞争场景
  • 市场定位/份额分析
  • 併购分析

第 11 章:公司简介

  • Umicore
    • 公司概况
    • 产品组合和描述
    • 财务概览
    • 主要进展
  • Sumitomo Metal Mining Co., Ltd.
  • POSCO
  • Zhejiang Huayou Cobalt
  • Shenzhen Dynanonic Co., Ltd.
  • Johnson Matthey
  • Targray Technology International
  • BASF SE
  • Mitsubishi Chemical Corporation
  • Kureha Corporation

第 12 章:附录

简介目录
Product Code: MA5416

Global Cathode Materials Market Overview

The global cathode materials market size was worth US$ 28.56 billion in 2023 and is estimated to reach US$ 76.99 billion by 2031, growing at a CAGR of 13.2 % during the forecast period (2024-2031).

Lithium and metal make up the active components in cathodes. Depending on the type of metal and its ratio, active materials have varying properties. Ni(Nickel) has a high capacity, Mn(Manganese) and Co(Cobalt) have a high level of safety and Al(Aluminum) enhances the battery's power. Mg: Ag (10:1), LiF and Mg: Al is some of the most commonly used cathodes. The cathode is commonly made of aluminum (Al), but alternative insulating layers like MgO, CsF, Al2O3 and NaCl have also been investigated to improve electron injection. Lithium(-ion) and sodium(-ion) cathode materials are identical to those used in classic LIBs and SIBs (lithium-ion and sodium-ion batteries, respectively).

Cathode materials are a sort of electric battery that can store power in energy and then convert it to electricity when needed. Cathode materials are made up of three major components: cathode, anode and solution. During the petrochemical process, the cathode defines the positive side of the terminal voltage battery, while the electrode obtains electrons from the external circuit.

Lithium iron phosphate, lithium cobalt oxide, lithium nickel manganese cobalt and lead dioxide make up the cathode material. Metal-insulator transitions, charge-ordering and co-operative Jahn-Teller distortions are just a few of the remarkable physical phenomena these materials show. Controlling the cathode material's local dynamic and structural behavior is critical for developing a custom energy storage device with innovative features.

Global Cathode Materials Market Dynamics

The rising usage of portable electronic gadgets, stationary energy storage and electric vehicles is driving greater demand for cathode material. Lithium-ion batteries with high energy density, discharge capability and fast charging are becoming increasingly popular.

Trending use of lithium-ion batteries for various purposes

The growing use of lithium-ion batteries in portable electronic accessories and equipment such as laptops, tablets, mobile phones, digital cameras and other similar devices is driving battery growth in those applications, resulting in increased demand for cathode materials. In consumer electronics and the automotive industry for starting, lighting and ignition applications, the usage of batteries is steadily increasing. Furthermore, the development of hybrid and electric engines for use in automobiles, ships and locomotives is increasing the need for batteries in the transportation industry.

The demand for cathode materials is increasing dramatically over the world as a result of this development. Another application of batteries is for power backup in homes, businesses and industries and for maintaining an uninterrupted power supply in power grids and telecom towers. With the modernization of the power sector, urbanization and the development of smart cities, demand for batteries and cathode materials is predicted to rise steadily shortly.

Rising demand for energy conservation

During the projection period, energy storage applications will likely increase product consumption. Consumer electronics, power tools, forklifts, telecommunications, ESS, UPS and transportation are all batteries' common uses. Concerns about power outages and their impact on industrial operations have fueled demand for uninterruptible power supply systems. Chemical, manufacturing, oil & gas and healthcare are just a few industries. The ongoing transition from conventional to alternative energy sources and the rising need for energy conservation is expected to accelerate the use of advanced energy storage systems.

The growing use of smart grids and renewable energy trends are expected to increase demand for these systems. Long-term, ongoing R&D to improve the efficiency of cathode materials for ESS, including lithium, sodium and nickel, is predicted to provide significant prospects for raw material makers. Growing awareness among cathode materials market players about sustainable battery material sourcing, recycling and waste disposal has been significant in optimizing the production and disposal routes across geographies.

Safety and high costs of raw materials

Limited capacity, high energy consumption in production, safety issues and high-cost raw materials are all disadvantages of inorganic cathode materials, which are frequently used. As a result, green and sustainable cathode materials with higher specific capacities, improved safety features and more abundant natural resources are required. A growing desire for cathode material safety during activities hinders the market's expansion.

COVID-19 Impact Analysis

The global market for cathode materials has been drastically impacted due to the COVID-19 epidemic. However, over the projection period, strict safety rules for batteries in terms of storage and shipping and poor conditions resulting from the COVID-19 epidemic are expected to hinder the cathode materials market's growth.

As the pandemic's negative impact on demand spreads to Chinese battery cell and cathode material producers, China's May export orders of LCO materials to Japan and South Korea are expected to drop, while export orders of LCO batteries to India are expected to drop.

Global Cathode Materials Market Segment Analysis

By battery, the cathode materials market is segmented into lithium-ion, lead-acid and others.

Lead-acid to hold the lions' share.

In a lithium-ion battery, the cathode material is the most important component that affects the cell's energy density. Cell voltage or cell capacity are used to calculate this energy density. The lithium-ion battery's operating mechanism is based on intercalation and deintercalation chemicals. Lithium ions from the cathode are admitted into the anode during charging and withdrawn during discharging, with the anode's structural change being structural negligible.

The cathode material used is determined by several characteristics, including cell voltage, capacity, energy & power capability, cycle life and operating temperature. Cobalt, manganese, phosphate, nickel cobalt manganese (NCM OR NMC), lithium iron phosphate (LFP) and other minerals are utilized in the cathode of a lithium-ion battery. Increased demand for lithium-ion batteries has resulted from improved reliability and compatibility, which has fueled demand for cathode materials. Furthermore, the industry has grown due to an expansion in the number of applications for lithium-ion batteries.

Global Cathode Materials Market Geographical Analysis

The largest share is to be held by Asia-Pacific.

Technological improvements are causing a surge in energy storage systems in these facilities, which is projected to drive up demand for cathode materials in the future years. Asia-Pacific is expected to be a prominent revenue provider globally throughout the forecast horizon. The growing use of batteries in various industries, such as automotive, consumer electronics, power tools and energy storage systems, is likely to grow the demand for cathode materials.

The rising popularity of electric vehicles in nations like China will likely boost demand for cathode material. High energy density, discharge capacities and fast charging are advantages of lithium-ion batteries, as is the rising market for smart devices and other consumer electronics in countries like China, India and Vietnam. Aside from production, China is a major user of batteries due to its large-scale electronic and automobile manufacturing.

Russia-Ukraine War Impact

Both Russia and Ukraine play an important role in the production of critical materials such as lithium, cobalt, nickel and manganese but due to war, the production of materials got affected. Due to this, the production cost of raw materials increases, which results in an increased price of cathode materials. Due to the increment in production cost the quality of cathode materials degrade.

Due to this conflict, governments' stringent policies and trade policies impacted the growth of the cathode materials market. Economic instability and cost fluctuation affected the overall demand of the cathode Materials market. There is trade restriction that limits the import and export of cathode materials between countries. Due to conflict, the collaboration between researchers and scientists also seems to have taken a hit.

By Battery

  • Lithium-Ion
  • Lead Acid
  • Others

By Material

  • Lithium Iron Phosphate (LFP)
  • Lithium Cobalt Oxide (LCO)
  • Lithium Nickel Manganese Cobalt (NMC)
  • Lithium Nickel Cobalt Aluminum (NCA)
  • Lithium Manganese Oxide (LMO)
  • Lead-Dioxide
  • Other

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In February 2024, POSCO announced the construction of the world's largest battery cathode plant cluster in Gwangyang for producing cathode materials for nickel, cobalt, and aluminum (NCA) batteries. The plant will have a production capacity of 52,500 tons of cathode materials.
  • In December 2023, LG Chem commenced construction of America's largest cathode plant in Tennessee, United States, with an annual production capacity of 60,000 tons.
  • In October 2023, Umicore announced the expansion of its electric vehicle (EV) battery materials production by increasing its production capacity for cathode active materials (CAM) and precursor cathode active materials (PCAM) at its plant in Ontario, Canada.
  • On 20 April 2023, OCSiAL launched two highly concentrated graphene nanotubes for anode and cathode applications, offering cost-effective sustainable battery solutions, including multiwall carbon nanotubes and carbon black.
  • On 1 May 2023, Cabot Corporation introduced ENTERA aerogel particles for lithium-ion batteries, designed to develop ultra-thin thermal barriers for electric vehicles. The ENTERA product is utilized by both battery and EV manufacturers, providing thermal management solutions.
  • On 22 May 2023, Gotion High-tech, a China-based company, launched the L600 Astroinno battery cell pack, claiming it to be the first non-NCM battery to offer a driving range of up to 1,000 kilometers.

Competitive Landscape

The major global players in the market include Ademco Global, Aethon, ABB Group, Amazon Web Services Inc., Beetl Robotics, Berkshire Grey Inc., Cobalt Robotics, CYBERDYNE Inc., Fanuc Corporation, iRobot Corporation, inVia Robotics, Kongsberg Maritime, KUKA AG, Locus Robotics, Northrop Grumman, RedZone Robotics, Relay Robotics, Yaskawa Electric Corporation

Why Purchase the Report?

  • To visualize the global battery separator market segmentation based on component, enterprise size, end-use and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of battery separator market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global cathode materials market report would provide approximately 80 tables, 85 figures, and 200 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Battery
  • 3.2. Snippet by Material
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Popularity of Electric Vehicles
      • 4.1.1.2. Rising Demand for Sustainable and High-Performance Energy Storage Solutions
    • 4.1.2. Restraints
      • 4.1.2.1. Government Stringent Regulations
      • 4.1.2.2. Cost and Health Hazards
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Scenario Post COVID-19
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Battery

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 7.1.2. Market Attractiveness Index, By Battery
  • 7.2. Lithium-Ion*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Lead Acid
  • 7.4. Others

8. By Material

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 8.1.2. Market Attractiveness Index, By Material
  • 8.2. Lithium Iron Phosphate (LFP)*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Lithium Cobalt Oxide (LCO)
  • 8.4. Lithium Nickel Manganese Cobalt (NMC)
  • 8.5. Lithium Nickel Cobalt Aluminum (NCA)
  • 8.6. Lithium Manganese Oxide (LMO)
  • 8.7. Lead-Dioxide
  • 8.8. Other

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. The U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. UK
      • 9.3.5.3. France
      • 9.3.5.4. Russia
      • 9.3.5.5. Spain
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. Umicore *
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Sumitomo Metal Mining Co., Ltd.
  • 11.3. POSCO
  • 11.4. Zhejiang Huayou Cobalt
  • 11.5. Shenzhen Dynanonic Co., Ltd.
  • 11.6. Johnson Matthey
  • 11.7. Targray Technology International
  • 11.8. BASF SE
  • 11.9. Mitsubishi Chemical Corporation
  • 11.10. Kureha Corporation

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us