2023-2033 年全球石墨市场
市场调查报告书
商品编码
1133602

2023-2033 年全球石墨市场

The Global Market for Graphite 2023-2033

出版日期: | 出版商: Future Markets, Inc. | 英文 198 Pages, 43 Figures, 33 Tables | 订单完成后即时交付

价格

石墨是绿色转型的重要原材料,在电动汽车和绿色储能等市场的需求不断增加。 根据目前的产量,到 2033 年,这些市场的需求将严重供不应求,除非显着扩大采矿和生产。 未来的能源需求将需要用于低碳技术开发的原料供应。 石墨被认为是交通运输和重工业脱碳的关键材料,预计未来几年市场将实现高速增长。

本报告调查全球石墨市场,提供石墨概况、产需变化及预测、按应用和地区进行详细分析、市场影响因素分析、主要公司概况等。我整理.

内容

第一章研究方法论

第二章介绍

  • 石墨型
  • 天然石墨
  • 人造石墨
  • 新技术
  • 回收石墨材料
  • 石墨的用途
  • 石墨价格
  • 石墨烯
    • CVD 石墨烯
    • 石墨烯纳米片
    • 氧化石墨烯/还原氧化石墨烯
    • 市场和应用
    • 价格
    • 生产能力
    • 製造商

第三章石墨市场

  • 世界石墨产量
    • 世界天然石墨矿产及储量
    • 全球石墨产量变化
    • 全球石墨产量预测
    • 供应人造石墨
  • 全球对石墨的需求:按最终用户分类
    • 天然石墨
    • 人造石墨
  • 石墨的实际需求:按最终用户分类
  • 石墨需求预测:按最终用户分类
  • 石墨市场趋势
  • 按地区划分的需求
    • 中国
    • 亚太地区
    • 北美
    • 欧洲
    • 巴西
  • 推动市场增长的因素
  • 限制市场增长的因素
  • 石墨市场现状
  • 石墨市场:2023 年以后
  • 主要公司
    • 天然石墨
    • 人造石墨
  • 供应链
  • 锂离子电池
    • 超级工厂
    • 电动汽车负极材料
    • 近期汽车市场和电动汽车趋势
    • 成本高且供应短缺
    • 电动汽车预测
    • 电池的石墨替代品
  • 耐火材料製造(钢铁市场)
    • 钢铁市场趋势和石墨增长
    • 耐火材料碳源
    • 炼钢电炉
  • 再渗碳
  • 石墨形状
  • 电子产品
    • 热管理
  • 燃料电池电极材料
  • 核能
  • 润滑剂
  • 摩擦材料
  • 阻燃剂
  • 太阳能和风力涡轮机

第四章公司简介(94家)

第 5 章参考资料

Graphite is a critical raw material for the green transition and demand is increasing in markets including electric vehicles and green energy storage. Based on current production, demand from these markets will result in a significant supply shortfall by 2033 unless mining and production is greatly expanded. Future energy needs will require supply of raw materials for the development of low-carbon technologies. Graphite is viewed as a critical material for decarbonizing transportation and heavy industry, resulting in high market growth in the coming years.

Graphite is used across multiple industries such as automotive, steel-making, powder metallurgy, fuel cells, and flame retardants. Graphite is the dominant active anode material used in lithium-ion batteries for electric vehicles (EV). Huge growth in demand for batteries in electric vehicles and energy storage systems has underpinned recent changes in the graphite market landscape.

Desirable properties of graphite include:

  • good conductor of heat and electricity.
  • high regular stiffness and strength.
  • maintains firmness and strength up to temperature more than 3600°C
  • highly lubricating material with chemical inertness and corrosion resistance.

Graphite is classified as natural and synthetic. Natural graphite is further classified into three principal types, crystalline small flake graphite (or flake graphite), crystalline vein or lump graphite, and amorphous graphite (very fine flake graphite), which have different physical properties, appearance, chemical composition, and impurities. Natural graphite can is mined in multiple countries. Synthetic graphite is produced from oil or coal-based needle coke and is preferred in the production electric arc furnaces (EAFs) for steelmaking. Battery producers can use both synthetic and natural graphite as their raw material.

Report contents include:

  • In-depth analysis of the global market for graphite.
  • Analysis of types of graphite, markets, applications and producers.
  • Recent market activity, drivers and trends.
  • Graphite pricing, historical, current and forecasts.
  • Market tonnage data-historical (2010-2022), estimates for 2023, and projections to 2033.
  • Regional market analysis.
  • Market share analysis based on type of graphite, end-use industry, and geographic region.
  • Graphite market in China.
  • Profiles of 94 companies. Companies profiled include Black Rock Mining, Evolution Energy, GrafTech International, Gratomic, Graphite India, Leading Edge Materials, NextSource Materials, Nippon Carbon, Reflex Advanced Materials Corp., Renascor Resources, SEC Carbon, SGL Group, Showa Denko, Syrah Resources, Talga Group, Tirupati Carbon & Graphite, Tokai Carbon, and Volt Resources.

TABLE OF CONTENTS

1 RESEARCH METHODOLOGY

2 INTRODUCTION

  • 2.1 Types of graphite
    • 2.1.1 Natural vs synthetic graphite
  • 2.2 Natural graphite
    • 2.2.1 Classification
    • 2.2.2 Processing
    • 2.2.3 Flake
      • 2.2.3.1 Grades
      • 2.2.3.2 Applications
      • 2.2.3.3 Spherical graphite
      • 2.2.3.4 Expandable graphite
    • 2.2.4 Amorphous graphite
      • 2.2.4.1 Applications
    • 2.2.5 Crystalline vein graphite
      • 2.2.5.1 Applications
  • 2.3 Synthetic graphite
    • 2.3.1 Classification
      • 2.3.1.1 Primary synthetic graphite
      • 2.3.1.2 Secondary synthetic graphite
    • 2.3.2 Processing
      • 2.3.2.1 Processing for battery anodes
    • 2.3.3 Issues with synthetic graphite production
    • 2.3.4 Isostatic Graphite
      • 2.3.4.1 Description
      • 2.3.4.2 Markets
      • 2.3.4.3 Producers and production capacities
    • 2.3.5 Graphite electrodes
    • 2.3.6 Extruded Graphite
    • 2.3.7 Vibration Molded Graphite
    • 2.3.8 Die-molded graphite
  • 2.4 New technologies
  • 2.5 Recycling of graphite materials
  • 2.6 Applications of graphite
  • 2.7 Graphite pricing (ton)
    • 2.7.1 Pricing in 2023
  • 2.8 Graphene
    • 2.8.1 CVD Graphene
    • 2.8.2 Graphene nanoplatelets
    • 2.8.3 Graphene oxide and reduced Graphene Oxide
    • 2.8.4 Markets and applications
    • 2.8.5 Prices
    • 2.8.6 Graphene production capacities
    • 2.8.7 Graphite producers

3 MARKETS FOR GRAPHITE

  • 3.1 Global production of graphite
    • 3.1.1 Global mine production and reserves of natural graphite
    • 3.1.2 Global graphite production in tonnes, 2016-2022
    • 3.1.3 Estimated global graphite production in tonnes, 2023-2033
    • 3.1.4 Synthetic graphite supply
  • 3.2 Global market demand for graphite by end use market 2016-2033, tonnes
    • 3.2.1 Natural graphite
    • 3.2.2 Synthetic graphite
  • 3.3 Demand for graphite by end use markets, 2022
  • 3.4 Demand for graphite by end use markets, 2033
  • 3.5 Graphite market developments 2020-2023
  • 3.6 Demand by region
    • 3.6.1 China
      • 3.6.1.1 Diversification of global supply and production
    • 3.6.2 Asia-Pacific
      • 3.6.2.1 Synthetic graphite
      • 3.6.2.2 Natural graphite
    • 3.6.3 North America
      • 3.6.3.1 Synthetic graphite
      • 3.6.3.2 Natural graphite
    • 3.6.4 Europe
      • 3.6.4.1 Synthetic graphite
      • 3.6.4.2 Natural graphite
    • 3.6.5 Brazil
  • 3.7 Factors that aid graphite market growth
  • 3.8 Factors that hinder graphite market growth
  • 3.9 Graphite market in 2022
  • 3.10 The graphite market in 2023 and beyond
  • 3.11 Main market players
    • 3.11.1 Natural graphite
    • 3.11.2 Synthetic graphite
  • 3.12 Market supply chain
  • 3.13 Lithium-ion batteries
    • 3.13.1 Gigafactories
    • 3.13.2 Anode material in electric vehicles
      • 3.13.2.1 Properties
      • 3.13.2.2 Market demand
    • 3.13.3 Recent trends in the automotive market and EVs
    • 3.13.4 Higher costs and tight supply
    • 3.13.5 Forecast for EVs
    • 3.13.6 Graphite alternatives for batteries
  • 3.14 Refractory manufacturing (Steel market)
    • 3.14.1 Steel market trends and graphite growth
    • 3.14.2 Carbon Sources for refractories
    • 3.14.3 Electric arc furnaces in steelmaking
  • 3.15 Recarburising
  • 3.16 Graphite shapes
  • 3.17 Electronics
    • 3.17.1 Thermal management
  • 3.18 Electrode materials for fuel cells
  • 3.19 Nuclear
  • 3.20 Lubricants
  • 3.21 Friction materials
  • 3.22 Flame retardants
  • 3.23 Solar and wind turbines

4 COMPANY PROFILES (94 company profiles)

5 REFERENCES

List of Tables

  • Table 1. Selected physical properties of graphite
  • Table 2. Characteristics of natural and synthetic graphite
  • Table 3. Comparison between Natural and Synthetic Graphite
  • Table 4. Classification of natural graphite with its characteristics
  • Table 5. Characteristics of synthetic graphite
  • Table 6: Main markets and applications of isostatic graphite
  • Table 7. Current or planned production capacities for isostatic graphite
  • Table 8. Main graphite electrode producers and capacities (MT/year)
  • Table 9. Markets and applications of graphite
  • Table 10. Classification, application and price of graphite as a function of size
  • Table 11. Properties of graphene, properties of competing materials, applications thereof
  • Table 12. Types of graphene and typical prices
  • Table 13. Applications of GO and rGO
  • Table 14. Markets, benefits and applications of graphene
  • Table 15. Graphene types and cost per kg
  • Table 16. Main graphene producers by country, annual production capacities, types and main markets they sell into
  • Table 17. Graphite producers
  • Table 18. Estimated global mine Production of natural graphite 2020-2022, by country (tons)
  • Table 19. Global production of graphite 2016-2022 MT
  • Table 20. Estimated global graphite production in tonnes, 2023-2033
  • Table 21. Graphite market developments 2020-2023
  • Table 22. Demand for synthetic graphite in Asia-Pacific 2016-2033, tonnes
  • Table 23. Demand for natural graphite in Asia-Pacific 2016-2033, tonnes
  • Table 24. Demand for synthetic graphite in North America 2016-2033, tonnes
  • Table 25. Demand for natural graphite in the USA 2016-2033, tonnes
  • Table 26. Demand for synthetic graphite in Europe 2018-2033, tonnes
  • Table 27. Demand for natural graphite in Europe 2016-2033, tonnes
  • Table 28. Main natural graphite producers
  • Table 29. Main synthetic graphite producers
  • Table 30. Key minerals in an EV battery
  • Table 31. Current and planned gigafactories
  • Table 32. Overview of thermal management materials
  • Table 33. Next Resources graphite flake products

List of Figures

  • Figure 1. Structure of graphite
  • Figure 2. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG)
  • Figure 3. Overview of graphite production, processing and applications
  • Figure 4. Flake graphite
  • Figure 5. Applications of flake graphite
  • Figure 6. Amorphous graphite
  • Figure 7. Vein graphite
  • Figure 8: Isostatic pressed graphite
  • Figure 9. Global market for graphite EAFs, 2018-2033 (MT)
  • Figure 10. Extruded graphite rod
  • Figure 11. Vibration Molded Graphite
  • Figure 12. Die-molded graphite products
  • Figure 13. Price of fine flake graphite 2022-2023
  • Figure 14. Price of spherical graphite, 2022-2023
  • Figure 15. Graphene layer structure schematic
  • Figure 16. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG
  • Figure 17. Graphite and graphene
  • Figure 18. Types of CVD methods
  • Figure 19. Schematic of the manufacture of GnPs starting from natural graphite
  • Figure 20. Global production of graphite 2016-2022 MT
  • Figure 21. Estimated global graphite production in tonnes, 2023-2033
  • Figure 22. Global market demand for natural graphite by end use market 2016-2033, tonnes
  • Figure 23. Global market demand for synthetic graphite by end use market 2016-2033, tonnes
  • Figure 24. Consumption of graphite by end use markets, 2022
  • Figure 25. Demand for graphite by end use markets, 2033
  • Figure 26. Global consumption of graphite by type and region, 2022
  • Figure 27. Consumption of synthetic graphite in Asia-Pacific 2016-2033, tonnes
  • Figure 28. Consumption of natural graphite in Asia-Pacific 2016-2033, tonnes
  • Figure 29. Demand for synthetic graphite in North America 2016-2033, tonnes
  • Figure 30. Demand for natural graphite in the USA 2018-2033, tonnes
  • Figure 31. Consumption of synthetic graphite in Europe 2015-2021, tonnes
  • Figure 32. Consumption of natural graphite in Europe 2015-2021, tonnes
  • Figure 33. Graphite market supply chain (battery market)
  • Figure 34. Graphite battery market demand, by type 2016-2033, tonnes
  • Figure 35. 2 Graphite: Content and share of total cell weight, for common types of lithium-ion cells for battery-powered electric vehicles
  • Figure 36. Graphite as active anode material in lithium-ion cell
  • Figure 37. Global electric car sales and share of global car sales, 2010-2023
  • Figure 38. Graphite market demand for refractories, by type 2016-2033, tonnes
  • Figure 39. Schematic illustration of an EAF
  • Figure 40. Graphite electrodes demand 2018-2033 in EAFs (million MT)
  • Figure 41. Graphite market demand for recarburising, by type 2016-2033, tonnes
  • Figure 42. Graphite market demand for recarburising, by type 2016-2033, tonnes
  • Figure 43. Graphite market demand for friction products by type 2016-2033, tonnes