到 2033 年生物基和可生物降解塑料(生物塑料)的全球市场
市场调查报告书
商品编码
1172497

到 2033 年生物基和可生物降解塑料(生物塑料)的全球市场

The Global Market for Biobased and Biodegradable Plastics (Bioplastics) to 2033

出版日期: | 出版商: Future Markets, Inc. | 英文 457 Pages, 116 Figures, 76 Tables | 订单完成后即时交付

价格

今天,大多数塑料都来自石化产品。许多塑料包装材料只使用一次就会失去 95% 的价值,每年给全球经济造成 80-1200 亿美元的损失。未来生物塑料市场有望大幅增长,预计2027年产能将突破600万吨。

生物塑料是生物基产品,由于其生物降解性和可再生潜力,可提高产品的可持续性。可生物降解为 CO2 和 H2O 的生物塑料很有吸引力,因为它们可以减少普通塑料的负面影响(浪费和对水环境的破坏)。用玉米、甘蔗和藻类等可再生原料代替石油也可以减少我们对原油的依赖,并减少我们对气候的影响。

儘管全球环保意识不断增强,但生物塑料目前仅占每年生产的 3.6 亿多吨塑料中的一小部分,并以每年 20-30% 的速度增长。由于先进生物聚合物和材料的开发、成本降低、监管和消费者意识的提高,需求正在增加。

不断上涨的油价、政府法规、消费者对环境的担忧和持续的人口增长都在推动塑料行业走向可持续发展。加强政府法规、消费者需求和节约能源的努力是推动基于可再生资源的聚合物生物材料研究和开发的主要因素。此外,生物塑料的性能不断提高,应用范围不断扩大。

本报告分析了全球生物基和生物降解塑料(生物塑料)市场,提出了全球塑料市场面临的挑战,生物基和生物降解塑料的概述和主要原材料,以及全球生产能力。□我们正在调查生产趋势和需求(2019-2033),按产品类型、应用和地区划分的详细趋势,以及主要公司的概况。

本报告重点分析:

  • 生物塑料的主要用途:刚性和柔性包装、消费品、汽车、建筑、纺织、电子、农业和园艺等。
  • 被分析公司的概况(所有 340 家公司:产量、生产能力等):NatureWorks、Total Corbion、Danimer Scientific、Novamont、Mitsubishi Chemicals、Indorama、Braskem、Avantium、Borealis、Cathay、Dupont、BASF、Arkema、DuPont , BASF, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus 、Humble Bee Bio 等

目录

第一章执行摘要

第二章分析方法

第三章全球塑料市场

  • 世界塑料产量
  • 塑料的重要性
  • 使用塑料的问题
  • 政策法规
  • 循环经济
  • 用于包装的传统高分子材料
    • 聚烯烃:聚丙烯和聚乙烯
    • PET 和其他聚酯聚合物
    • 用于包装的可再生和生物基聚合物
  • 合成化石基和生物基聚合物的比较
  • 生物塑料处理

第 4 章生物基化学品及原料

  • 类型
  • 生产能力
  • 生物基己二酸
    • 使用和生产
  • 11-氨基十一烷酸 (11-AA)
  • 1,4-丁二醇 (1,4-BDO)
  • 十二烷二酸 (DDDA)
  • 环氧氯丙烷 (ECH)
  • 乙烯
  • 糠醛
  • 5-羟甲基糠醛 (HMF)
  • 5-氯甲基糠醛 (5-CMF)
  • 2,5-夫喃二甲酸 (2,5-FDCA)
  • 夫喃二甲酸甲酯(FDME)
  • 异山梨醇
  • 衣康酸
  • 3-羟基丙酸 (3-HP)
  • 5-羟甲基糠醛 (HMF)
  • 乳酸 (D-LA)
  • 乳酸:L-乳酸(L-LA)
  • 丙交酯
  • 左旋葡糖酮
  • 乙□丙酸
  • 乙二醇 (MEG)
  • 单丙二醇 (MPG)
  • 粘康酸
  • 生物石脑油
  • 戊二异氰酸酯
  • 1,3-丙二醇 (1,3-PDO)
  • 癸二酸
  • 琥珀酸 (SA)

第 5 章生物塑料和生物聚合物

  • 生物基/可再生塑料
    • 嵌入式生物基塑料
    • 新型生物基塑料
  • 可生物降解/可堆肥塑料
    • 可生物降解
    • 可堆肥性
  • 优点和缺点
  • 生物基和/或可生物降解塑料的类型
  • 按类型划分的生物基和/或可生物降解塑料市场领导者
  • 主要地区/主要国家产能:按类型
    • 各国生物基聚乙烯(Bio-PE)产能
    • 各国生物基聚对苯二甲酸乙二醇酯(Bio-PET)产能
    • 各国生物基聚□胺(Bio-PA)产能
    • 各国生物基聚丙烯(Bio-PP)产能
    • 各国生物基聚对苯二甲酸丙二醇酯(Bio-PTT)产能
    • 各国生物基聚己二酸丁二醇酯(PBAT)产能
    • 各国生物基聚丁二酸丁二醇酯(PBS)产能
    • 各国生物基聚乳酸(PLA)产能
    • 各国聚羟基脂肪酸酯(PHA)产能
    • 混合淀粉产能:按国家分类
  • 合成生物基聚合物
    • 聚乳酸(Bio PLA)
    • 聚对苯二甲酸乙二醇酯(生物 PET)
    • 聚对苯二甲酸丙二醇酯 (Bio PTT)
    • 聚乙烯夫喃酸酯 (Bio-PEF)
    • 聚□胺 (Bio-PA)
    • 聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(Bio-PBAT)
    • 聚丁二酸丁二醇酯 (PBS) 和共聚物
    • 聚乙烯(生物 PE)
    • 聚丙烯(生物PP)
  • 天然生物基聚合物
    • 聚羟基链烷酸酯 (PHA)
    • 多醣
    • 基于蛋白质的生物塑料
    • 藻类/真菌
    • 壳聚醣
  • 生物基和可持续塑料的生产:按地区
    • 北美
    • 欧洲
    • 亚太地区
    • 拉丁美洲
  • 塑料市场的细分
    • 打包
    • 消费产品
    • 汽车
    • 建筑/施工
    • 纤维
    • 电子产品
    • 农业/园艺

第六章公司概况(全部340家公司)

第 7 章参考资料

At present, the majority of plastics are derived from petrochemicals. Most plastic packaging is used only once (single use items) and 95% of the value of the material is thus lost, with a global economic cost of US$80-$120 billion annually. The market for bioplastics will grow significantly in coming years, with production capacities exceeding 6 million tonnes by 2027.

Bioplastics are biobased products that allow for greater product sustainability due to their biodegradability and renewability. Their use is attractive as bioplastics that biodegrade to CO2 and H2O mitigate the negative effects of standard plastic (litter and damage to aqua environments). Renewable feedstocks such as corn, sugarcane, and algae can be utilized instead of petroleum, thereby reducing global dependence on crude oil and lessening the impact on climate.

Despite growing global environmental awareness, bioplastics currently account for a very small percent of the >360 million tons of plastics produced annually, but with annual growth of 20-30%. Due to the development of advanced biopolymers and materials, reduced costs, regulations and increased consumer awareness demand is rising.

The sky rocketing price of petroleum coupled with government regulations and consumer global environmental concerns, and continued population growth is pushing the plastic industries towards sustainability. Growing government regulatory restrictions, consumers' desire and energy conservation are some of the key factors that drive research and proudct development towards renewable resource-based polymeric biomaterials. The performance of bioplastics is also improving and range of applications expanding.

This report covers:

  • Analysis of Biobased and Biodegradable Plastics (Bioplastics) market.
  • Global production capacities, market demand and trends 2019-2033 for Biobased and Biodegradable Plastics (Bioplastics).
  • Analysis of biobased chemicals including:
    • Bio-based adipic acid
    • 11-Aminoundecanoic acid (11-AA)
    • 1,4-Butanediol (1,4-BDO)
    • Dodecanedioic acid (DDDA)
    • Epichlorohydrin (ECH)
    • Ethylene
    • Furfural
    • 5-Chloromethylfurfural (5-CMF)
    • 5-Hydroxymethylfurfural (HMF)
    • 2,5-Furandicarboxylic acid (2,5-FDCA)
    • Furandicarboxylic methyl ester (FDME)
    • Isosorbide
    • Itaconic acid
    • 3-Hydroxypropionic acid (3-HP)
    • 5 Hydroxymethyl furfural (HMF)
    • Lactic acid (D-LA)
    • Lactic acid - L-lactic acid (L-LA)
    • Lactide
    • Levoglucosenone
    • Levulinic acid
    • Monoethylene glycol (MEG)
    • Monopropylene glycol (MPG)
    • Muconic acid
    • Naphtha
    • Pentamethylene diisocyanate
    • 1,3-Propanediol (1,3-PDO)
    • Sebacic acid
    • Succinic acid (SA)
  • Analysis of synthetic Bioplastics market including:
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Polyamides (Bio-PA)
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including:
    • Polyhydroxyalkanoates (PHA)
    • Polysaccharides
    • Microfibrillated cellulose (MFC)
    • Cellulose nanocrystals
    • Cellulose nanofibers,
    • Protein-based bioplastics
    • Algal and fungal based bioplastics and biopolymers.
  • Market segmentation analysis for bioplastics. Markets analysed include rigid & flexible packaging, consumer goods, automotive, building & construction, textiles, electronics, agriculture & horticulture.
  • Emerging technologies in synthetic and natural produced bioplastics and biopolymers.
  • 340 company profiled including products and production capacities. Companies profiled include NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio and many more.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market drivers and trends in Biobased and Biodegradable Plastics (Bioplastics)
  • 1.2. Global production to 2033
  • 1.3. Main producers and global production capacities
    • 1.3.1. Producers
    • 1.3.2. By biobased and biodegradable plastics type
    • 1.3.3. By region
  • 1.4. Global demand for Biobased and Biodegradable Plastics (Bioplastics), by market
  • 1.5. Challenges for the Biobased and Biodegradable Plastics (Bioplastics) market

2. RESEARCH METHODOLOGY

3. THE GLOBAL PLASTICS MARKET

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Policy and regulations
  • 3.5. The circular economy
  • 3.6. Conventional polymer materials used in packaging
    • 3.6.1. Polyolefins: Polypropylene and polyethylene
    • 3.6.2. PET and other polyester polymers
    • 3.6.3. Renewable and bio-based polymers for packaging
  • 3.7. Comparison of synthetic fossil-based and bio-based polymers
  • 3.8. End-of-life treatment of bioplastics

4. BIO-BASED CHEMICALS AND FEEDSTOCKS

  • 4.1. Types
  • 4.2. Production capacities
  • 4.3. Bio-based adipic acid
    • 4.3.1. Applications and production
  • 4.4. 11-Aminoundecanoic acid (11-AA)
    • 4.4.1. Applications and production
  • 4.5. 1,4-Butanediol (1,4-BDO)
    • 4.5.1. Applications and production
  • 4.6. Dodecanedioic acid (DDDA)
    • 4.6.1. Applications and production
  • 4.7. Epichlorohydrin (ECH)
    • 4.7.1. Applications and production
  • 4.8. Ethylene
    • 4.8.1. Applications and production
  • 4.9. Furfural
    • 4.9.1. Applications and production
  • 4.10. 5-Hydroxymethylfurfural (HMF)
    • 4.10.1. Applications and production
  • 4.11. 5-Chloromethylfurfural (5-CMF)
    • 4.11.1. Applications and production
  • 4.12. 2,5-Furandicarboxylic acid (2,5-FDCA)
    • 4.12.1. Applications and production
  • 4.13. Furandicarboxylic methyl ester (FDME)
  • 4.14. Isosorbide
    • 4.14.1. Applications and production
  • 4.15. Itaconic acid
    • 4.15.1. Applications and production
  • 4.16. 3-Hydroxypropionic acid (3-HP)
    • 4.16.1. Applications and production
  • 4.17. 5 Hydroxymethyl furfural (HMF)
    • 4.17.1. Applications and production
  • 4.18. Lactic acid (D-LA)
    • 4.18.1. Applications and production
  • 4.19. Lactic acid - L-lactic acid (L-LA)
    • 4.19.1. Applications and production
  • 4.20. Lactide
    • 4.20.1. Applications and production
  • 4.21. Levoglucosenone
    • 4.21.1. Applications and production
  • 4.22. Levulinic acid
    • 4.22.1. Applications and production
  • 4.23. Monoethylene glycol (MEG)
    • 4.23.1. Applications and production
  • 4.24. Monopropylene glycol (MPG)
    • 4.24.1. Applications and production
  • 4.25. Muconic acid
    • 4.25.1. Applications and production
  • 4.26. Bio-Naphtha
    • 4.26.1. Applications and production
    • 4.26.2. Production capacities
    • 4.26.3. Bio-naptha producers
  • 4.27. Pentamethylene diisocyanate
    • 4.27.1. Applications and production
  • 4.28. 1,3-Propanediol (1,3-PDO)
    • 4.28.1. Applications and production
  • 4.29. Sebacic acid
    • 4.29.1. Applications and production
  • 4.30. Succinic acid (SA)
    • 4.30.1. Applications and production

5. BIOPLASTICS AND BIOPOLYMERS

  • 5.1. Bio-based or renewable plastics
    • 5.1.1. Drop-in bio-based plastics
    • 5.1.2. Novel bio-based plastics
  • 5.2. Biodegradable and compostable plastics
    • 5.2.1. Biodegradability
    • 5.2.2. Compostability
  • 5.3. Advantages and disadvantages
  • 5.4. Types of Bio-based and/or Biodegradable Plastics
  • 5.5. Market leaders by biobased and/or biodegradable plastic types
  • 5.6. Regional/country production capacities, by main types
    • 5.6.1. Bio-based Polyethylene (Bio-PE) production capacities, by country
    • 5.6.2. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country
    • 5.6.3. Bio-based polyamides (Bio-PA) production capacities, by country
    • 5.6.4. Bio-based Polypropylene (Bio-PP) production capacities, by country
    • 5.6.5. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country
    • 5.6.6. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country
    • 5.6.7. Bio-based Polybutylene succinate (PBS) production capacities, by country
    • 5.6.8. Bio-based Polylactic acid (PLA) production capacities, by country
    • 5.6.9. Polyhydroxyalkanoates (PHA) production capacities, by country
    • 5.6.10. Starch blends production capacities, by country
  • 5.7. SYNTHETIC BIO-BASED POLYMERS
    • 5.7.1. Polylactic acid (Bio-PLA)
      • 5.7.1.1. Market analysis
      • 5.7.1.2. Production
      • 5.7.1.3. Producers and production capacities, current and planned
        • 5.7.1.3.1. Lactic acid producers and production capacities
        • 5.7.1.3.2. PLA producers and production capacities
        • 5.7.1.3.3. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)
    • 5.7.2. Polyethylene terephthalate (Bio-PET)
      • 5.7.2.1. Market analysis
      • 5.7.2.2. Producers and production capacities
      • 5.7.2.3. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)
    • 5.7.3. Polytrimethylene terephthalate (Bio-PTT)
      • 5.7.3.1. Market analysis
      • 5.7.3.2. Producers and production capacities
      • 5.7.3.3. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)
    • 5.7.4. Polyethylene furanoate (Bio-PEF)
      • 5.7.4.1. Market analysis
      • 5.7.4.2. Comparative properties to PET
      • 5.7.4.3. Producers and production capacities
        • 5.7.4.3.1. FDCA and PEF producers and production capacities
        • 5.7.4.3.2. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons)
    • 5.7.5. Polyamides (Bio-PA)
      • 5.7.5.1. Market analysis
      • 5.7.5.2. Producers and production capacities
      • 5.7.5.3. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)
    • 5.7.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
      • 5.7.6.1. Market analysis
      • 5.7.6.2. Producers and production capacities
      • 5.7.6.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)
    • 5.7.7. Polybutylene succinate (PBS) and copolymers
      • 5.7.7.1. Market analysis
      • 5.7.7.2. Producers and production capacities
      • 5.7.7.3. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)
    • 5.7.8. Polyethylene (Bio-PE)
      • 5.7.8.1. Market analysis
      • 5.7.8.2. Producers and production capacities
      • 5.7.8.3. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons)
    • 5.7.9. Polypropylene (Bio-PP)
      • 5.7.9.1. Market analysis
      • 5.7.9.2. Producers and production capacities
      • 5.7.9.3. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)
  • 5.8. NATURAL BIO-BASED POLYMERS
    • 5.8.1. Polyhydroxyalkanoates (PHA)
      • 5.8.1.1. Technology description
      • 5.8.1.2. Types
        • 5.8.1.2.1. PHB
        • 5.8.1.2.2. PHBV
      • 5.8.1.3. Synthesis and production processes
      • 5.8.1.4. Market analysis
      • 5.8.1.5. Commercially available PHAs
      • 5.8.1.6. Markets for PHAs
        • 5.8.1.6.1. Packaging
        • 5.8.1.6.2. Cosmetics
          • 5.8.1.6.2.1. PHA microspheres
        • 5.8.1.6.3. Medical
          • 5.8.1.6.3.1. Tissue engineering
          • 5.8.1.6.3.2. Drug delivery
        • 5.8.1.6.4. Agriculture
          • 5.8.1.6.4.1. Mulch film
          • 5.8.1.6.4.2. Grow bags
      • 5.8.1.7. Producers and production capacities
      • 5.8.1.8. PHA production capacities 2019-2033 (1,000 tons)
    • 5.8.2. Polysaccharides
      • 5.8.2.1. Microfibrillated cellulose (MFC)
        • 5.8.2.1.1. Market analysis
        • 5.8.2.1.2. Producers and production capacities
      • 5.8.2.2. Nanocellulose
        • 5.8.2.2.1. Cellulose nanocrystals
          • 5.8.2.2.1.1. Synthesis
          • 5.8.2.2.1.2. Properties
          • 5.8.2.2.1.3. Production
          • 5.8.2.2.1.4. Applications
          • 5.8.2.2.1.5. Market analysis
          • 5.8.2.2.1.6. Producers and production capacities
        • 5.8.2.2.2. Cellulose nanofibers
          • 5.8.2.2.2.1. Applications
          • 5.8.2.2.2.2. Market analysis
          • 5.8.2.2.2.3. Producers and production capacities
        • 5.8.2.2.3. Bacterial Nanocellulose (BNC)
          • 5.8.2.2.3.1. Production
          • 5.8.2.2.3.2. Applications
    • 5.8.3. Protein-based bioplastics
      • 5.8.3.1. Types, applications and producers
    • 5.8.4. Algal and fungal
      • 5.8.4.1. Algal
        • 5.8.4.1.1. Advantages
        • 5.8.4.1.2. Production
        • 5.8.4.1.3. Producers
      • 5.8.4.2. Mycelium
        • 5.8.4.2.1. Properties
        • 5.8.4.2.2. Applications
        • 5.8.4.2.3. Commercialization
    • 5.8.5. Chitosan
      • 5.8.5.1. Technology description
  • 5.9. PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS, BY REGION
    • 5.9.1. North America
    • 5.9.2. Europe
    • 5.9.3. Asia-Pacific
      • 5.9.3.1. China
      • 5.9.3.2. Japan
      • 5.9.3.3. Thailand
      • 5.9.3.4. Indonesia
    • 5.9.4. Latin America
  • 5.10. MARKET SEGMENTATION OF BIOPLASTICS
    • 5.10.1. Packaging
      • 5.10.1.1. Processes for bioplastics in packaging
      • 5.10.1.2. Applications
      • 5.10.1.3. Flexible packaging
        • 5.10.1.3.1. Production volumes 2019-2033
      • 5.10.1.4. Rigid packaging
        • 5.10.1.4.1. Production volumes 2019-2033
    • 5.10.2. Consumer products
      • 5.10.2.1. Applications
    • 5.10.3. Automotive
      • 5.10.3.1. Applications
      • 5.10.3.2. Production capacities
    • 5.10.4. Building & construction
      • 5.10.4.1. Applications
      • 5.10.4.2. Production capacities
    • 5.10.5. Textiles
      • 5.10.5.1. Apparel
      • 5.10.5.2. Footwear
      • 5.10.5.3. Medical textiles
      • 5.10.5.4. Production capacities
    • 5.10.6. Electronics
      • 5.10.6.1. Applications
      • 5.10.6.2. Production capacities
    • 5.10.7. Agriculture and horticulture
      • 5.10.7.1. Production capacities

6. COMPANY PROFILES (340 companies)

7. REFERENCES

List of Tables

  • Table 1. Market trends and drivers in biobased and biodegradable plastics (bioplastics)
  • Table 2. Global production capacities of biobased and biodegradable plastics 2018-2033, in 1,000 tons
  • Table 3. Global production capacities for biobased and biodegradable plastics (bioplastics), by producers
  • Table 4. Global production capacities of biobased and biodegradable plastics (bioplastics) 2019-2033, by type, in 1,000 tons
  • Table 5. Issues related to the use of plastics
  • Table 6. Types of biobased and biodegradable plastics (bioplastics)
  • Table 7. Comparison of synthetic fossil-based and bio-based polymers
  • Table 8. List of Bio-based chemicals
  • Table 9. Lactide applications
  • Table 10. Biobased MEG producers capacities
  • Table 11. Type of biodegradation
  • Table 12. Advantages and disadvantages of biobased plastics compared to conventional plastics
  • Table 13. Types of Bio-based and/or Biodegradable Plastics, applications
  • Table 14. Market leader by Bio-based and/or Biodegradable Plastic types
  • Table 15. Bioplastics regional production capacities, 1,000 tons, 2019-2033
  • Table 16. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
  • Table 17. Lactic acid producers and production capacities
  • Table 18. PLA producers and production capacities
  • Table 19. Planned PLA capacity expansions in China
  • Table 20. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
  • Table 21. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
  • Table 22. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
  • Table 23. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
  • Table 24. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
  • Table 25. PEF vs. PET
  • Table 26. FDCA and PEF producers
  • Table 27. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
  • Table 28. Leading Bio-PA producers production capacities
  • Table 29. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
  • Table 30. Leading PBAT producers, production capacities and brands
  • Table 31. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
  • Table 32. Leading PBS producers and production capacities
  • Table 33. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
  • Table 34. Leading Bio-PE producers
  • Table 35. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
  • Table 36. Leading Bio-PP producers and capacities
  • Table 37.Types of PHAs and properties
  • Table 38. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
  • Table 39. Polyhydroxyalkanoate (PHA) extraction methods
  • Table 40. Polyhydroxyalkanoates (PHA) market analysis
  • Table 41. Commercially available PHAs
  • Table 42. Markets and applications for PHAs
  • Table 43. Applications, advantages and disadvantages of PHAs in packaging
  • Table 44. Polyhydroxyalkanoates (PHA) producers
  • Table 45. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
  • Table 46. Leading MFC producers and capacities
  • Table 47. Synthesis methods for cellulose nanocrystals (CNC)
  • Table 48. CNC sources, size and yield
  • Table 49. CNC properties
  • Table 50. Mechanical properties of CNC and other reinforcement materials
  • Table 51. Applications of nanocrystalline cellulose (NCC)
  • Table 52. Cellulose nanocrystals analysis
  • Table 53: Cellulose nanocrystal production capacities and production process, by producer
  • Table 54. Applications of cellulose nanofibers (CNF)
  • Table 55. Cellulose nanofibers market analysis
  • Table 56. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
  • Table 57. Applications of bacterial nanocellulose (BNC)
  • Table 58. Types of protein based-bioplastics, applications and companies
  • Table 59. Types of algal and fungal based-bioplastics, applications and companies
  • Table 60. Overview of alginate-description, properties, application and market size
  • Table 61. Companies developing algal-based bioplastics
  • Table 62. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 63. Companies developing mycelium-based bioplastics
  • Table 64. Overview of chitosan-description, properties, drawbacks and applications
  • Table 65. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons
  • Table 66. Biobased and sustainable plastics producers in North America
  • Table 67. Biobased and sustainable plastics producers in Europe
  • Table 68. Biobased and sustainable plastics producers in Asia-Pacific
  • Table 69. Biobased and sustainable plastics producers in Latin America
  • Table 70. Processes for bioplastics in packaging
  • Table 71. Comparison of bioplastics' (PLA and PHAs) properties to other common polymers used in product packaging
  • Table 72. Typical applications for bioplastics in flexible packaging
  • Table 73. Typical applications for bioplastics in rigid packaging
  • Table 74. Granbio Nanocellulose Processes
  • Table 75. Lactips plastic pellets
  • Table 76. Oji Holdings CNF products

List of Figures

  • Figure 1. Total global production capacities for biobased and biodegradable plastics, all types, 000 tons
  • Figure 2. Global production capacities of biobased and biodegradable plastics (bioplastics) 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types
  • Figure 3. Global production capacities of biobased and biodegradable plastics (bioplastics) in 2019-2033, by type, in 1,000 tons
  • Figure 4. Global production capacities of biobased and biodegradable plastics (bioplastics) 2019-2033, by region, tonnes
  • Figure 5. Current and future applications of biobased and biodegradable plastics (bioplastics)
  • Figure 6. Global demand for biobased and biodegradable plastics (bioplastics) by end user market, 2021
  • Figure 7. Global production capacities for biobased and biodegradable plastics (bioplastics) by end user market 2019-2033, tons
  • Figure 8. Challenges for the biobased and biodegradable plastics (bioplastics) market
  • Figure 9. Global plastics production 1950-2020, millions of tons
  • Figure 10. The circular plastic economy
  • Figure 11. Routes for synthesizing polymers from fossil-based and bio-based resources
  • Figure 12. Bio-based chemicals and feedstocks production capacities, 2018-2033
  • Figure 13. Overview of Toray process. Overview of process
  • Figure 14. Production capacities for 11-Aminoundecanoic acid (11-AA)
  • Figure 15. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes)
  • Figure 16. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes)
  • Figure 17. Epichlorohydrin production capacities, 2018-2033 (tonnes)
  • Figure 18. Ethylene production capacities, 2018-2033 (tonnes)
  • Figure 19. Potential industrial uses of 3-hydroxypropanoic acid
  • Figure 20. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes)
  • Figure 21. Lactide production capacities, 2018-2033 (tonnes)
  • Figure 22. Bio-MEG production capacities, 2018-2033
  • Figure 23. Bio-MPG production capacities, 2018-2033 (tonnes)
  • Figure 24. Biobased naphtha production capacities, 2018-2033 (tonnes)
  • Figure 25. Bio-naptha producers and production capacities
  • Figure 26. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes)
  • Figure 27. Sebacic acid production capacities, 2018-2033 (tonnes)
  • Figure 28. Coca-Cola PlantBottle®
  • Figure 29. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 30. Bioplastics regional production capacities, 1,000 tons, 2019-2033
  • Figure 31. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033
  • Figure 32. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033
  • Figure 33. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033
  • Figure 34. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033
  • Figure 35. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033
  • Figure 36. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033
  • Figure 37. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033
  • Figure 38. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033
  • Figure 39. PHA production capacities, 1,000 tons, 2019-2033
  • Figure 40. Starch blends production capacities, 1,000 tons, 2019-2033
  • Figure 41. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)
  • Figure 42. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)
  • Figure 43. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)
  • Figure 44. Production capacities of Polyethylene furanoate (PEF) to 2025
  • Figure 45. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons)
  • Figure 46. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)
  • Figure 47. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)
  • Figure 48. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)
  • Figure 49. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons)
  • Figure 50. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)
  • Figure 51. PHA family
  • Figure 52. PHA production capacities 2019-2033 (1,000 tons)
  • Figure 53. TEM image of cellulose nanocrystals
  • Figure 54. CNC preparation
  • Figure 55. Extracting CNC from trees
  • Figure 56. CNC slurry
  • Figure 57. CNF gel
  • Figure 58. Bacterial nanocellulose shapes
  • Figure 59. BLOOM masterbatch from Algix
  • Figure 60. Typical structure of mycelium-based foam
  • Figure 61. Commercial mycelium composite construction materials
  • Figure 62. Global production capacities of biobased and sustainable plastics 2020
  • Figure 63. Global production capacities of biobased and sustainable plastics 2025
  • Figure 64. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, 1,000 tons
  • Figure 65. PHA bioplastics products
  • Figure 66. Bioplastics for flexible packaging by bioplastic material type, 2019-2033 ('000 tonnes)
  • Figure 67. Bioplastics for rigid packaging by bioplastic material type, 2019-2033 ('000 tonnes)
  • Figure 68. Global bioplastic packaging by geographic market, 2023-2033 ('000 tonnes)
  • Figure 69. Global production capacities for biobased and sustainable plastics in consumer products 2019-2033, in 1,000 tons
  • Figure 70. Global production capacities for biobased and sustainable plastics in automotive 2019-2033, in 1,000 tons
  • Figure 71. Global production capacities for biobased and sustainable plastics in building and construction 2019-2033, in 1,000 tons
  • Figure 72. AlgiKicks sneaker, made with the Algiknit biopolymer gel
  • Figure 73. Reebok's [REE]GROW running shoes
  • Figure 74. Camper Runner K21
  • Figure 75. Global production capacities for biobased and sustainable plastics in textiles 2019-2033, in 1,000 tons
  • Figure 76. Global production capacities for biobased and sustainable plastics in electronics 2019-2033, in 1,000 tons
  • Figure 77. Biodegradable mulch films
  • Figure 78. Global production capacities for biobased and sustainable plastics in agriculture 2019-2033, in 1,000 tons
  • Figure 79. Algiknit yarn
  • Figure 80. Bio-PA rear bumper stay
  • Figure 81. BIOLO e-commerce mailer bag made from PHA
  • Figure 82. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc
  • Figure 83. formicobio™ technology
  • Figure 84. nanoforest-S
  • Figure 85. nanoforest-PDP
  • Figure 86. nanoforest-MB
  • Figure 87. CuanSave film
  • Figure 88. ELLEX products
  • Figure 89. CNF-reinforced PP compounds
  • Figure 90. Kirekira! toilet wipes
  • Figure 91. Mushroom leather
  • Figure 92. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
  • Figure 93. PHA production process
  • Figure 94. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
  • Figure 95. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
  • Figure 96. CNF gel
  • Figure 97. Block nanocellulose material
  • Figure 98. CNF products developed by Hokuetsu
  • Figure 99. Made of Air's HexChar panels
  • Figure 100. TransLeather
  • Figure 101. IPA synthesis method
  • Figure 102. MOGU-Wave panels
  • Figure 103. Reishi
  • Figure 104. Nippon Paper Industries' adult diapers
  • Figure 105. Compostable water pod
  • Figure 106. CNF clear sheets
  • Figure 107. Oji Holdings CNF polycarbonate product
  • Figure 108. Manufacturing process for STARCEL
  • Figure 109. Lyocell process
  • Figure 110. Spider silk production
  • Figure 111. Sulapac cosmetics containers
  • Figure 112. Sulzer equipment for PLA polymerization processing
  • Figure 113. Teijin bioplastic film for door handles
  • Figure 114. Corbion FDCA production process
  • Figure 115. traceless® hooks
  • Figure 116. Visolis' Hybrid Bio-Thermocatalytic Process