CTP/CTB/CTC整合型电池的全球市场(2024年~2035年)
市场调查报告书
商品编码
1486556

CTP/CTB/CTC整合型电池的全球市场(2024年~2035年)

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 205 Pages, 61 Tables, 58 Figures | 订单完成后即时交付

价格

电动车销量的成长正在推动电池需求,2023年电动车电池的市场规模将超过750GWh,较上年增长40%。电动车约占这一增长的 95%。电动车市场正在迅速扩大,主要课题之一是开发高度可靠且安全的电池,以确保长行驶距离。电动车中使用的传统锂离子电池存在能量密度低、热稳定性差、易着火等限制。汽车製造商和电池製造商正在开发新电池来解决这些问题,以确保电动车的安全使用。 CTP(Cell To Pack)、CTB(Cell To Body)和CTC(Cell To Chassis)电池技术相对于传统锂离子电池技术的主要优势在于能量密度的提高和性能参数的增强。这些创新的电池整合方法可实现更高的体积和重量能量密度,有助于减轻车辆整体重量,同时打造更紧凑、更轻的电池,占用更少的车辆包装空间。

此外,CTP/CTB/CTC技术有利于更有效率的电池封装设计,最大限度地减少製造步骤,减少整体电池封装体积,并提高设计灵活性。这会带来更长的电池寿命和更好的性能指标,包括更稳定的电池特性、更长的电池寿命和更高的整体电池性能。这些先进电池技术的一个主要好处是可以降低电池包装和组装成本。与传统方法相比,CTP/CTB/CTC 封装技术简化了製造流程并降低了复杂性,为汽车製造商提供了经济高效的解决方案。

本报告提供全球CTP/CTB/CTC整合型电池市场相关调查分析,提供市场促进因素和趋势,过去的需求与预测,企业简介等资讯。

目录

第1章 摘要整理

  • 市场概览
  • 市场驱动因素与趋势
  • 近期市场发展与技术亮点
  • 竞争状况
  • 监理状况
  • 未来展望与新趋势
  • 市场预测与成长预测
    • 电动车电池需求:以电动车类型划分
    • 电动车电池需求:依地区划分
    • 电动车电池需求:依电池类型划分
    • 电池材料
    • 电池组材料

第2章 技术概要

  • 整合型电池系统概要
    • 电动车电池材料
    • 从电池到电池组
    • CTP、CTB、CTC
    • CTM(电池到模组)
    • 乘用车(底盘)整合电池
    • 比较分析
  • 电动车的CTP,CTB,CTC的重要性
  • 成本分析
    • CTP
    • CTB
    • CTC
  • CTP技术
    • 定义和概念
    • 主要元件和架构
    • CTC和CTP的比较
    • 电池单元设计的最佳化
    • 优点与课题
    • 製造流程
    • 设计上的考虑事项
  • CTB技术
    • 定义和概念
    • 主要元件和架构
    • CTB和CTP的比较
    • CTB和CTC的比较
    • 优点与课题
    • 製造流程
    • 设计上的考虑事项
  • CTC技术
    • 定义和概念
    • 主要元件和架构
    • 优点与课题
    • 製造流程
    • 设计上的考虑事项
  • 热管理系统
    • 液体冷却系统
    • 空气冷却系统
    • 导热材料
    • 冷板、冷却液软管
    • 相变材料(PCM)
    • 智慧热管理系统
    • 两相冷却系统
    • 直接电池浸入式冷却
    • 热电冷却
    • 基于石墨烯的热管理
    • 热能收集
    • 热超材料
  • 电池管理系统(BMS)
    • 功能和零组件
    • 集中型BMS vs. 分散式BMS
    • 通讯协议
    • BMS的进步
    • 安全性和可靠性相关考虑事项

第3章 市场分析

  • 全球整合型电池市场概要
    • 中国的生产
  • 市场规模与预测(2024年~2035年)
    • CTP市场
    • CTB市场
    • CTC市场
  • 市场区隔
    • 各技术(CTP,CTB,CTC)
    • 车辆各类型(小客车,商用车,其他)
    • 各地区
    • 各用途(电池电动车,混合电动车,插电式混合型电动车)
    • 按电池化学
  • 推动市场要素
    • 电动车的需求不断增加
    • 需要轻量高效率的电池系统
    • 电池技术的进步
    • 监理措施与激励措施
    • 政府政策与排放目标
  • 阻碍市场要素
    • 初始成本高
    • 技术课题与整合复杂性
    • 安全性问题与可靠性问题
    • 基础设施和充电设施有限
  • 机会
    • 效能提升
    • 降低成本的潜力
    • 设计创新
    • 电动车市场的扩张
    • 环境效益
  • 课题
  • 竞争情形
    • 主要企业与策略
    • 汽车OEM
    • 策略性伙伴关係
    • 中国的电池整合政策
  • 法规形势
    • 安全与环境法规
    • 奖励和补贴
    • 回收处置规定
  • 未来预测和新的趋势
    • 电池化学和材料的进展
    • 人工智慧与物联网的融合
    • 无线电池管理系统
    • 更重视永续性和循环性
  • 新的用途与市场
    • 航太,防卫
    • 能源储存系统
    • 海事,船舶

第4章 企业简介

  • 24M Technologies, Inc
  • Automotive Energy Supply Corporation (AESC)
  • Beijing Hyundai
  • BAIC BJEV
  • Benteler
  • BMW
  • BYD
  • China Aviation Lithium Battery (CALB) Technology Co., Ltd.
  • CATL
  • Changan Automobile
  • Chery International
  • EVE Energy Co., Ltd.
  • Farasis Energy
  • FAW
  • FinDreams Battery
  • Ford Motor Company
  • GAC Aion
  • GM
  • Gotion High-Tech
  • Great Wall Motor (GWM)
  • Hycan
  • IAT Automobile
  • JAC Motors
  • LG Energy
  • Leap Motor
  • Neta Auto
  • NIO, Inc.
  • Our Next Energy (ONE)
  • REPT Battero
  • SAIC (Shanghai Automotive Industry Corporation)
  • Samsung SDI Co.
  • SEVB
  • SK On
  • Stellantis N.V.
  • StoreDot
  • SVOLT Energy
  • Tesla
  • Tuopu Group
  • Volvo
  • Volkswagen
  • Xiaomi Automobile
  • XING Mobility
  • Xpeng
  • ZEEKR

第5章 调查手法

第6章 参考文献

The growth in EV sales is driving demand for batteries, with the market for EV batteries surpassing 750 GWh in 2023, up 40% on the previous year. Electric cars account for approximately 95% of this growth. The EV market is rapidly expanding, and one of the significant challenges is the development of a reliable and safe battery that can provide a long driving range. The traditional lithium-ion batteries used in electric vehicles have limitations such as low energy density, poor thermal stability, and a tendency to catch fire. Vehicle OEMS and battery manufacturing companies are developing new batteries to address these issues for safe uses in electric vehicles. The key advantage of cell to pack (CTP), cell to body (CTB), and cell to chassis (CTC) battery technologies over traditional lithium-ion battery technologies lies in their improved energy density and enhanced performance parameters. These innovative battery integration approaches enable higher volumetric and gravimetric energy densities, allowing for more compact and lightweight battery solutions that occupy less vehicle packaging space while contributing to reduced overall vehicle weight.

Moreover, CTP, CTB, and CTC technologies facilitate more efficient battery packaging designs, minimizing manufacturing steps, reducing overall battery packaging volume, and enabling greater design flexibility. This translates into longer battery life and superior performance metrics, such as more stable battery characteristics, extended battery lifespans, and improved overall battery performance. A significant advantage of these advanced battery technologies lies in their potential to lower battery packaging and assembly costs. By streamlining manufacturing processes and reducing complexity compared to traditional methods, CTP, CTB, and CTC packaging techniques offer cost-effective solutions for automotive manufacturers.

"Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market Report 2024-2035" covers the latest technologies, key applications, manufacturing processes, advantages, challenges, and opportunities within this rapidly evolving industry across major global regions. The integration of batteries directly into vehicle bodies and chassis represents a transformative shift in automotive design and engineering. This report meticulously evaluates the technological capabilities, real-world applicability, advantages, disadvantages, and tangible benefits CTP, CTB and CTC offer the entire automotive value chain.

The report assesses the pivotal battery technology trends propelling advancements in on-road and off-road automotive and aerospace vehicles utilizing CTP, CTB and CTC integrated solutions. This comprehensive evaluation illuminates the key commercial opportunities and strategic entry points across different vehicle segments. Also covered are emerging next-generation battery chemistries, materials, and architectures poised to disrupt the market further. The role of transformative technologies like AI, IoT, and wireless battery management systems in optimizing performance, safety, and sustainability is examined in detail. Report contents include:

Technology Overview including in-depth technical specifications on:

  • Cell-to-Pack (CTP) Technology
  • Cell-to-Body (CTB) Technology
  • Cell-to-Chassis (CTC) Technology
  • Thermal Management Systems
  • Battery Management Systems (BMS)

Market Analysis

  • Global Market Overview
  • Market Size and Forecast
  • Market Segmentation
  • Market Drivers
  • Market Restraints
  • Opportunities
  • Challenges

Competitive Landscape

  • Key Players and Strategies
  • Automotive OEMs
  • Strategic Partnerships

Regulatory Landscape

  • Safety and Environmental Regulations
  • Incentives and Subsidies
  • Recycling and Disposal Regulations

Future Outlook and Emerging Trends

  • Battery Chemistry and Materials Advancements
  • AI and IoT Integration
  • Wireless Battery Management Systems
  • Sustainability and Circularity Initiatives
  • Emerging Applications and Markets

Profiles of 44 companies including Company Overview, Product Portfolio and Recent Developments and Initiatives. Companies profiled include BYD, CALB, CATL, EVE Energy, GM, LG Energy, Leap Motor, NIO, Stellantis, StoreDot and SVOLT Energy (Full list of companies profiled in table of contents).

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
  • 1.2. Market Drivers and Trends
  • 1.3. Recent Market Developments and Technology Highlights
  • 1.4. Competitive Landscape
  • 1.5. Regulatory Landscape
  • 1.6. Future Outlook and Emerging Trends
  • 1.7. Market Forecast and Growth Projections
    • 1.7.1. EV Battery Demand, By EV Type
    • 1.7.2. EV Battery Demand, By Region
    • 1.7.3. EV Battery Demand, By Battery Type
    • 1.7.4. Battery Cell Materials
    • 1.7.5. Battery Pack Materials

2. TECHNOLOGY OVERVIEW

  • 2.1. Overview of Integrated Battery Systems
    • 2.1.1. Battery Materials for Electric Vehicles
    • 2.1.2. From Cell to Pack
    • 2.1.3. Cell-to-Pack (CTP), Cell-to-Body (CTB), and Cell-to-Chassis (CTC)
    • 2.1.4. Cell-to-Module (CTM)
    • 2.1.5. Passenger Car Integrated Battery (Chassis)
    • 2.1.6. Comparative Analysis
  • 2.2. Importance of CTP, CTB, and CTC in Electric Vehicles
  • 2.3. Cost analysis
    • 2.3.1. CTP (Cell to Pack)
    • 2.3.2. CTB (Cell to Body)
    • 2.3.3. CTC (Cell to Chassis)
  • 2.4. Cell-to-Pack (CTP) Technology
    • 2.4.1. Definition and Concept
    • 2.4.2. Key Components and Architecture
    • 2.4.3. Comparison between CTC and CTP
    • 2.4.4. Cell Design Optimization
    • 2.4.5. Advantages and Challenges
    • 2.4.6. Manufacturing Processes
    • 2.4.7. Design Considerations
  • 2.5. Cell-to-Body (CTB) Technology
    • 2.5.1. Definition and Concept
    • 2.5.2. Key Components and Architecture
    • 2.5.3. Comparison between CTB and CTP
    • 2.5.4. Comparison between CTB and CTC
    • 2.5.5. Advantages and Challenges
    • 2.5.6. Manufacturing Processes
    • 2.5.7. Design Considerations
  • 2.6. Cell-to-Chassis (CTC) Technology
    • 2.6.1. Definition and Concept
    • 2.6.2. Key Components and Architecture
    • 2.6.3. Advantages and Challenges
    • 2.6.4. Manufacturing Processes
    • 2.6.5. Design Considerations
  • 2.7. Thermal Management Systems
    • 2.7.1. Liquid Cooling Systems
    • 2.7.2. Air Cooling Systems
    • 2.7.3. Thermal Interface Materials
      • 2.7.3.1. Properties for TIMs in EVs
      • 2.7.3.2. Gap Pads in EV Batteries
      • 2.7.3.3. Gap Fillers
      • 2.7.3.4. Thermally Conductive Adhesives
      • 2.7.3.5. Chemistry Comparison
      • 2.7.3.6. Gap Filler to Thermally Conductive Adhesives
    • 2.7.4. Cold Plates and Coolant Hoses
      • 2.7.4.1. Coolant Fluids in EVs
      • 2.7.4.2. Inter-cell Heat Spreaders or Cooling Plates
      • 2.7.4.3. Advanced Cold Plate Design
      • 2.7.4.4. Coolant Hoses for EVs
    • 2.7.5. Phase Change Materials (PCMs)
    • 2.7.6. Smart Thermal Management Systems
    • 2.7.7. Two-Phase Cooling Systems:
    • 2.7.8. Direct Battery Immersion Cooling
    • 2.7.9. Thermoelectric Cooling
    • 2.7.10. Graphene-based Thermal Management
    • 2.7.11. Thermal Energy Harvesting
    • 2.7.12. Thermal Metamaterials
  • 2.8. Battery Management Systems (BMS)
    • 2.8.1. Functions and Components
    • 2.8.2. Centralized vs. Distributed BMS
    • 2.8.3. Communication Protocols
    • 2.8.4. Advancements in BMS
    • 2.8.5. Safety and Reliability Considerations

3. MARKET ANALYSIS

  • 3.1. Global Integrated Battery Market Overview
    • 3.1.1. Production in China
  • 3.2. Market Size and Forecast (2024-2035)
    • 3.2.1. CTP Market
    • 3.2.2. CTB Market
    • 3.2.3. CTC Market
  • 3.3. Market Segmentation
    • 3.3.1. By Technology (CTP, CTB, CTC)
    • 3.3.2. By Vehicle Type (Passenger Cars, Commercial Vehicles, Others)
    • 3.3.3. By Region
    • 3.3.4. By Application (Battery Electric Vehicles, Hybrid Electric Vehicles, Plug-in Hybrid Electric Vehicles)
    • 3.3.5. By Battery Chemistry
  • 3.4. Market Drivers
    • 3.4.1. Increasing Demand for Electric Vehicles
    • 3.4.2. Need for Lightweight and Efficient Battery Systems
    • 3.4.3. Advancements in Battery Technology
    • 3.4.4. Regulatory Initiatives and Incentives
    • 3.4.5. Government Policies and Emissions Targets
  • 3.5. Market Restraints
    • 3.5.1. High Initial Costs
    • 3.5.2. Technical Challenges and Integration Complexities
    • 3.5.3. Safety Concerns and Reliability Issues
    • 3.5.4. Limited Infrastructure and Charging Facilities
  • 3.6. Opportunities
    • 3.6.1. Performance Improvements
    • 3.6.2. Cost Reduction Potential
    • 3.6.3. Design Innovation
    • 3.6.4. EV Market Expansion
    • 3.6.5. Environmental Benefits
  • 3.7. Challenges
  • 3.8. Competitive Landscape
    • 3.8.1. Key Players and Strategies
    • 3.8.2. Automotive OEMS
    • 3.8.3. Strategic partnerships
    • 3.8.4. Battery Integration Policies in China
  • 3.9. Regulatory Landscape
    • 3.9.1. Safety and Environmental Regulations
      • 3.9.1.1. Battery Safety Standards
      • 3.9.1.2. Emissions and Fuel Economy Standards
      • 3.9.1.3. Environmental Impact Regulations
    • 3.9.2. Incentives and Subsidies
      • 3.9.2.1. Government Incentives
    • 3.9.3. Recycling and Disposal Regulations
      • 3.9.3.1. Battery Recycling Regulations
      • 3.9.3.2. End-of-Life Vehicle Directives
  • 3.10. Future Outlook and Emerging Trends
    • 3.10.1. Advancements in Battery Chemistry and Materials
      • 3.10.1.1. Solid-State Batteries
      • 3.10.1.2. Lithium-Sulfur Batteries
      • 3.10.1.3. Sodium-ion Batteries
      • 3.10.1.4. Silicon Anodes
    • 3.10.2. Integration of Artificial Intelligence and Internet of Things (IoT)
      • 3.10.2.1. Predictive Maintenance
      • 3.10.2.2. Smart Battery Management Systems
    • 3.10.3. Wireless Battery Management Systems
    • 3.10.4. Increasing Focus on Sustainability and Circularity
      • 3.10.4.1. Sustainable Battery Materials
      • 3.10.4.2. Battery Recycling and Reuse
  • 3.11. Emerging Applications and Markets
    • 3.11.1. Aerospace and Defense
    • 3.11.2. Energy Storage Systems
    • 3.11.3. Marine and Shipping

4. COMPANY PROFILES

  • 4.1 24M Technologies, Inc,
  • 4.2. Automotive Energy Supply Corporation (AESC)
  • 4.3. Beijing Hyundai
  • 4.4. BAIC BJEV
  • 4.5. Benteler
  • 4.6. BMW
  • 4.7. BYD
  • 4.8. China Aviation Lithium Battery (CALB) Technology Co., Ltd.
  • 4.9. CATL
  • 4.10. Changan Automobile
  • 4.11. Chery International
  • 4.12. EVE Energy Co., Ltd.
  • 4.13. Farasis Energy
  • 4.14. FAW
  • 4.15. FinDreams Battery
  • 4.16. Ford Motor Company
  • 4.17. GAC Aion
  • 4.18. GM
  • 4.19. Gotion High-Tech
  • 4.20. Great Wall Motor (GWM)
  • 4.21. Hycan
  • 4.22. IAT Automobile
  • 4.23. JAC Motors
  • 4.24. LG Energy
  • 4.25. Leap Motor
  • 4.26. Neta Auto
  • 4.27. NIO, Inc.
  • 4.28. Our Next Energy (ONE)
  • 4.29. REPT Battero
  • 4.30. SAIC (Shanghai Automotive Industry Corporation)
  • 4.31. Samsung SDI Co.
  • 4.32. SEVB
  • 4.33. SK On
  • 4.34. Stellantis N.V.
  • 4.35. StoreDot
  • 4.36. SVOLT Energy
  • 4.37. Tesla
  • 4.38. Tuopu Group
  • 4.39. Volvo
  • 4.40. Volkswagen
  • 4.41. Xiaomi Automobile
  • 4.42. XING Mobility
  • 4.43. Xpeng
  • 4.44. ZEEKR

5. RESEARCH METHODOLOGY

6. REFERENCES

List of Tables

  • Table 1. Comparison of Advanced Battery Chemistries
  • Table 2. CTP, CTB and CTC Integrated Battery Market Drivers and Trends
  • Table 3. Recent CTP, CTB and CTC Integrated Battery Market Developments and Technology Highlights
  • Table 4. CTP, CTB and CTC Integrated Battery Market Competitive Landscape
  • Table 5. CTP, CTB and CTC Integrated Battery Market Regulations
  • Table 6. Trends in CTP, CTB and CTC Integrated Batteries
  • Table 7. EV Battery Demand Market Share Forecast (GWh) 2021-2035
  • Table 8. EV Battery Demand Market Share Forecast (GWh) 2021-2035, by region
  • Table 9. Battery Market Value Forecast for EVs 2022-2035 (Millions US$)
  • Table 10. Battery Cell Materials Forecast for 2022-2035
  • Table 11. Battery Cell Materials Market 2022-2035 (MT)
  • Table 12. Battery Pack Materials Market 2022-2035
  • Table 13. Total Battery Cell and Pack Materials Forecast by Vehicle Type 2022-2035 (MT)
  • Table 14.Total Battery Cell and Pack Materials Market Value Forecast 2022-2035 (Millions US$)
  • Table 15. Battery Materials for Electric Vehicles
  • Table 16. Main types of cells used in electric vehicle batteries
  • Table 17. Cell vs Pack Energy Density
  • Table 18. Comparative analysis of CTP, CTB and CTC
  • Table 19. Summary of Cost Impact
  • Table 20. Cost Analysis for CTP, CTB and CTC Integrated Batteries
  • Table 21. Comparison of CTP Mode and Conventional Battery Pack
  • Table 22. Comparison between CTC and CTP
  • Table 23. Cell to Pack (CTP) Advantages and Challenges
  • Table 24. Manufacturing Processes for Cell-to-Pack
  • Table 25. Design Considerations for Cell-to-Pack
  • Table 26. Comparison between CTB and CTP
  • Table 27. Comparison between CTB and CTC
  • Table 28. Cell to Body (CTB) Advantages and Challenges
  • Table 29. Cell to Body (CTB) Manufacturing Processes
  • Table 30. Cell to Body (CTB) Design Considerations
  • Table 31. Cell to Chassis (CTC) Advantages and Challenges
  • Table 32. Cell to Chassis (CTC) Manufacturing Processes
  • Table 33. Comparison of Thermal Management Systems
  • Table 34. Liquid Cooling Systems
  • Table 35. Air Cooling Systems
  • Table 36. TIM Application by Cell Format
  • Table 37. Key Properties for TIMs in EVs
  • Table 38. Key properties and characteristics of common TIM chemistries
  • Table 39. Overview of the battery thermal management strategies employed by major OEMs
  • Table 40. Types of PCMs
  • Table 41. Comparison of Battery Management System (BMS) Architectures
  • Table 42. Functions and components in Battery Management Systems (BMS) for Electric Vehicles (EVs)
  • Table 43. Centralized vs. Distributed BMS
  • Table 44. Communication Protocols in BMS
  • Table 45. Safety and Reliability Considerations
  • Table 46. Global CTP Market Size and Forecast (2023-2035), billions USD
  • Table 47. Global CTB Market Size and Forecast (2022-2035), Billions USD
  • Table 48. Global CTC Market Size and Forecast (2024-2035), Billions USD
  • Table 49. Integrated Battery Market Share by Vehicle Type, 2023-2035, Billions USD
  • Table 50. Integrated Battery Market Share by Region, 2023-2035, Billions USD
  • Table 51. Integrated Battery Market Share by Application, 2023-2035, Billions USD
  • Table 52. Challenges in CTP, CTB and CTC Integrated Battery Market
  • Table 53. Key Players in the Integrated Battery Market
  • Table 54. Comparison of Automotive OEM integrated batteries
  • Table 55. Strategic partnerships in the CTP, CTB and CTC Integrated Battery Market
  • Table 56. Overview of key policies and initiatives in China
  • Table 57. Battery Safety Standards for Integrated Batteries in EVs
  • Table 58. Emissions and Fuel Economy Standards Affecting EV Battery Development
  • Table 59. Environmental Impact Regulations Affecting EV Battery Production and Recycling
  • Table 60. Battery Recycling Regulations
  • Table 61. End-of-Life Vehicle Directives

List of Figures

  • Figure 1. EV Battery Demand Market Share Forecast (GWh) 2021-2035
  • Figure 2. EV Battery Demand Market Share Forecast (GWh) 2021-2035, by region
  • Figure 3. Battery Market Value Forecast for EVs 2022-2035 (Millions US$)
  • Figure 4. Battery Cell Materials Market 2022-2035 (MT)
  • Figure 5. Battery Pack Materials Market 2022-2035 (MT)
  • Figure 6. Total Battery Cell and Pack Materials Forecast by Vehicle Type 2022-2035 (MT)
  • Figure 7. Total Battery Cell and Pack Materials Market Value Forecast 2022-2035 (US$)
  • Figure 8. Li-ion batteries packaging schemes for EVs
  • Figure 9. Types of integrated battery packs
  • Figure 10. Component Breakdown of a Battery Pack
  • Figure 11. CATL's CIIC skateboard chassis
  • Figure 12. Battery pack with a cell-to-pack design and prismatic cells
  • Figure 13. Battery pack with a cell-to-pack design and prismatic cells
  • Figure 14. BYD CTP schematic
  • Figure 15. Qilin battery
  • Figure 16. CTP Technology Architecture
  • Figure 17. The structural design of blade cell, cell arrays, and battery pack
  • Figure 18. Gravimetric Energy Density and Cell-to-pack Ratio
  • Figure 19. BYD Cell-to-body
  • Figure 20. CATL Cell-to-chassis
  • Figure 21. Tesla CTC Technology
  • Figure 22. CTC Technology Architecture. The battery pack is a structural component of the vehicle, where cells are assembled directly into a car's structure
  • Figure 23. Passenger NEV production in China 2020-2024
  • Figure 24. Passenger BEV production in China 2020-2024
  • Figure 25. Passenger PHEV production in China 2020-2024
  • Figure 26. Global CTP Market Size and Forecast (2023-2035), billions USD
  • Figure 27. Global CTB Market Size and Forecast (2022-2035), Billions USD
  • Figure 28. Global CTC Market Size and Forecast (2024-2035), Billions USD
  • Figure 29. Integrated Battery Market Share by Technology (2023-2035), Billions USD
  • Figure 30. Integrated Battery Market Share by Vehicle Type, 2023-2035, Billions USD
  • Figure 31. Integrated Battery Market Share by Region, 2023-2035, Billions USD
  • Figure 32. Integrated Battery Market Share by Application, 2023-2035
  • Figure 33. Integrated Battery Market Share by Battery Chemistry, 2023-2035, Billions USD
  • Figure 34. Rolling chassis developed by BENTELER and Bosch
  • Figure 35. BYD CTB technology
  • Figure 36. CALB "U" type battery
  • Figure 37. CATL CTP 1.0-3.0
  • Figure 38. CTP 3.0: Shenxing Batteries
  • Figure 39. CATL Skateboard chassis
  • Figure 40. "II" Battery System
  • Figure 41. Farasis Cell-to-Pack Battery System
  • Figure 42. Farasis Energy Super Pouch Solution (SPS)
  • Figure 43. GAC Aion's magazine battery
  • Figure 44. GM Ultium
  • Figure 45. Batteries with CTP mounted on a mock-up design of an automobile
  • Figure 46. LG Energy's cell-to-pack technology for pouch batteries
  • Figure 47. Leapmotor CTC 2.0
  • Figure 48. Nio Hybrid Chemistry Cell-to-pack
  • Figure 49. Our Next Energy: Aeris
  • Figure 50. SAIC CTP battery design
  • Figure 51. StoreDot I-BEAM XFC Cells
  • Figure 52. Dragon Armor Battery
  • Figure 53. Short Blade Battery LCTP Technology
  • Figure 54. L400 Short Blade Batteries
  • Figure 55. Tesla Cell-to-Chassis
  • Figure 56. IMMERSIO(TM) Cell-to-Pack (CTP) architecture
  • Figure 57. Xpeng CIB technology
  • Figure 58. Gold brick battery