先进化学回收的全球市场(2025-2040)
市场调查报告书
商品编码
1517851

先进化学回收的全球市场(2025-2040)

The Global Market for Advanced Chemical Recycling 2025-2040

出版日期: | 出版商: Future Markets, Inc. | 英文 283 Pages, 60 Tables, 54 Figures | 订单完成后即时交付

价格

全球塑胶产业面临日益严峻的挑战,需要解决塑胶废弃物对环境的影响。随着传统的废弃物管理方法难以跟上,先进的化学回收和溶解技术成为将产业转变为更永续的循环模式的关键解决方案。

本报告针对全球先进化学品回收市场进行研究分析,提供各地区的市场规模及预测、各技术类型的处理能力预测、各聚合物的需求预测、竞争格局等。

目录

第1章 回收技术分类

第2章 研究方法

第3章 简介

  • 世界塑胶产量
  • 塑胶的重要性
  • 与塑胶使用相关的问题
  • 生物基或再生塑胶
    • 即插式生物基塑胶
    • 新型生物基塑胶
  • 可生物降解/可堆肥塑胶
    • 可生物降解
    • 可堆肥性
  • 塑胶污染
  • 政策法规
  • 循环经济
  • 塑胶回收
    • 机械回收
    • 高阶回收(分子回收、化学回收)
  • 生命週期评估

第4章 先进化学品回收市场

  • 市场驱动因素与趋势
  • 产业新闻、资金、发展(2020-2024年)
  • 处理能力
  • 世界聚合物需求:依回收技术划分(2022-2040年)
    • PE
    • PP
    • PET
    • PS
    • 尼龙
    • 其他
  • 全球聚合物需求:依回收技术和地区划分(2022-2040年)
    • 欧洲
    • 北美
    • 南美洲
    • 亚洲
    • 大洋洲
    • 非洲
  • 化学回收塑胶製品
  • 市场地图
  • 价值链
  • 先进塑胶回收製程的生命週期评估(LCA)
    • PE
    • PP
    • PET
  • 再生塑胶的产量和成本
    • 每种化学回收技术的塑胶产量
    • 价格
  • 市场挑战

第5章 先进回收技术

  • 应用
  • 热解
    • 非催化性
    • 催化剂
    • SWOT分析
    • 公司及加工能力
  • 气化
    • 技术概述
    • SWOT分析
    • 公司和处理能力(目前、计画)
  • 解散
    • 技术概述
    • SWOT分析
    • 公司和处理能力(目前、计画)
  • 解聚
    • 水解
    • 酵素降解
    • 甲醇分解
    • 糖解
    • 氨解作用
    • 公司和处理能力(目前、计画)
  • 其他先进化学回收技术
    • 水热分解
    • 透过线上重整进行热解
    • 微波热解
    • 等离子体热解
    • 等离子气化
    • 超临界流体
    • 碳纤维回收
  • 热固性材料的高级回收
    • 热回收
    • 溶剂分解
    • 催化糖解
    • 醇解、水解
    • 离子液体
    • 超临界流体
    • 电浆
    • 公司

第6章 公司简介(170家公司简介)

第7章 术语表

第8章 参考文献

The global plastics industry is facing a growing challenge - the need to address the environmental impact of plastic waste. As traditional waste management methods struggle to keep pace, advanced chemical recycling and dissolution technologies have emerged as a crucial solution to transform the industry towards a more sustainable, circular model. This The Global Market for Advanced Chemical Recycling 2025-2040 provides an in-depth analysis of the rapidly evolving landscape of chemical recycling and dissolution.

Report contents include:

  • Market Forecasts and Capacity Projections (2025-2040)
  • Detailed global and regional market size projections
  • Capacity forecasts by technology type (pyrolysis, gasification, depolymerization, dissolution)
  • Polymer-specific demand forecasts for PE, PP, PET, PS, Nylon, and others
  • Analysis of market penetration rates and adoption curves
  • Comprehensive overview of advanced chemical recycling processes
    • In-depth analysis of pyrolysis (catalytic and non-catalytic)
    • Gasification technologies and syngas utilization pathways
    • Depolymerization methods (hydrolysis, glycolysis, methanolysis, aminolysis)
    • Dissolution and solvent-based purification techniques
    • Emerging technologies: hydrothermal cracking, microwave-assisted pyrolysis, plasma processes
    • Carbon fiber recycling technologies and market
  • Regional Market Analysis
  • Industry Developments and Competitive Landscape:
    • Comprehensive overview of industry news, partnerships, and acquisitions (2020-2024)
    • Analysis of funding trends and investment patterns
    • Profiles of 170+ companies shaping the advanced chemical recycling landscape. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova and SABIC.
  • Assessment of competitive strategies and market positioning
  • Value Chain Analysis:
    • Detailed examination of the advanced chemical recycling value chain
    • Key players at each stage: waste collection, sorting, pre-treatment, recycling, and end-use markets
    • Analysis of integration strategies and emerging business models
  • End-Use Markets and Applications
  • Sustainability Metrics and Life Cycle Assessments:
    • Comparative LCAs of advanced chemical recycling vs. mechanical recycling and virgin plastic production
    • Environmental impact analysis: energy use, greenhouse gas emissions, and resource efficiency
    • Discussion of carbon footprint reduction potential and circular economy benefits
  • Insights into recycling yields for different technologies and polymer types
  • Cost structures and economies of scale in advanced recycling processes
  • Market pricing trends for chemically recycled plastics and competitive positioning
  • Regulatory Landscape and Policy Drivers
  • Market Drivers and Challenges

This comprehensive report is an indispensable tool for:

  • Plastic manufacturers and processors looking to incorporate recycled content
  • Waste management companies exploring advanced recycling opportunities
  • Chemical and petrochemical companies entering the circular economy space
  • Technology developers and equipment manufacturers in the recycling sector
  • Investors and financial institutions assessing market potential and risks
  • Policymakers and regulators shaping the future of plastic waste management
  • Sustainability professionals and environmental organizations tracking industry progress
  • Researchers and academics studying circular economy solutions

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED CHEMICAL RECYCLING MARKET

  • 4.1. Market drivers and trends
  • 4.2. Industry news, funding and developments 2020-2024
  • 4.3. Capacities
  • 4.4. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.4.1. PE
    • 4.4.2. PP
    • 4.4.3. PET
    • 4.4.4. PS
    • 4.4.5. Nylon
    • 4.4.6. Others
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.5.1. Europe
    • 4.5.2. North America
    • 4.5.3. South America
    • 4.5.4. Asia
    • 4.5.5. Oceania
    • 4.5.6. Africa
  • 4.6. Chemically recycled plastic products
  • 4.7. Market map
  • 4.8. Value chain
  • 4.9. Life Cycle Assessments (LCA) of advanced plastics recycling processes
    • 4.9.1. PE
    • 4.9.2. PP
    • 4.9.3. PET
  • 4.10. Recycled plastic yield and cost
    • 4.10.1. Plastic yield of each chemical recycling technologies
    • 4.10.2. Prices
  • 4.11. Market challenges

5. ADVANCED RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Pyrolysis
    • 5.2.1. Non-catalytic
    • 5.2.2. Catalytic
      • 5.2.2.1. Polystyrene pyrolysis
      • 5.2.2.2. Pyrolysis for production of bio fuel
      • 5.2.2.3. Used tires pyrolysis
        • 5.2.2.3.1. Conversion to biofuel
      • 5.2.2.4. Co-pyrolysis of biomass and plastic wastes
    • 5.2.3. SWOT analysis
    • 5.2.4. Companies and capacities
  • 5.3. Gasification
    • 5.3.1. Technology overview
      • 5.3.1.1. Syngas conversion to methanol
      • 5.3.1.2. Biomass gasification and syngas fermentation
      • 5.3.1.3. Biomass gasification and syngas thermochemical conversion
    • 5.3.2. SWOT analysis
    • 5.3.3. Companies and capacities (current and planned)
  • 5.4. Dissolution
    • 5.4.1. Technology overview
    • 5.4.2. SWOT analysis
    • 5.4.3. Companies and capacities (current and planned)
  • 5.5. Depolymerisation
    • 5.5.1. Hydrolysis
      • 5.5.1.1. Technology overview
      • 5.5.1.2. SWOT analysis
    • 5.5.2. Enzymolysis
      • 5.5.2.1. Technology overview
      • 5.5.2.2. SWOT analysis
    • 5.5.3. Methanolysis
      • 5.5.3.1. Technology overview
      • 5.5.3.2. SWOT analysis
    • 5.5.4. Glycolysis
      • 5.5.4.1. Technology overview
      • 5.5.4.2. SWOT analysis
    • 5.5.5. Aminolysis
      • 5.5.5.1. Technology overview
      • 5.5.5.2. SWOT analysis
    • 5.5.6. Companies and capacities (current and planned)
  • 5.6. Other advanced chemical recycling technologies
    • 5.6.1. Hydrothermal cracking
    • 5.6.2. Pyrolysis with in-line reforming
    • 5.6.3. Microwave-assisted pyrolysis
    • 5.6.4. Plasma pyrolysis
    • 5.6.5. Plasma gasification
    • 5.6.6. Supercritical fluids
    • 5.6.7. Carbon fiber recycling
      • 5.6.7.1. Processes
      • 5.6.7.2. Companies
  • 5.7. Advanced recycling of thermoset materials
    • 5.7.1. Thermal recycling
      • 5.7.1.1. Energy Recovery Combustion
      • 5.7.1.2. Anaerobic Digestion
      • 5.7.1.3. Pyrolysis Processing
      • 5.7.1.4. Microwave Pyrolysis
    • 5.7.2. Solvolysis
    • 5.7.3. Catalyzed Glycolysis
    • 5.7.4. Alcoholysis and Hydrolysis
    • 5.7.5. Ionic liquids
    • 5.7.6. Supercritical fluids
    • 5.7.7. Plasma
    • 5.7.8. Companies

6. COMPANY PROFILES (170 company profiles)

7. GLOSSARY OF TERMS

8. REFERENCES

List of Tables

  • Table 1. Types of recycling
  • Table 2. Issues related to the use of plastics
  • Table 3. Type of biodegradation
  • Table 4. Overview of the recycling technologies
  • Table 5. Polymer types, use, and recovery
  • Table 6. Composition of plastic waste streams
  • Table 7. Comparison of mechanical and advanced chemical recycling
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution)
  • Table 10. Market drivers and trends in the advanced chemical recycling market
  • Table 11. Advanced chemical recycling industry news, funding and developments 2020-2024
  • Table 12. Advanced plastics recycling capacities, by technology
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*
  • Table 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Table 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Table 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Table 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Table 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Table 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Table 25. Example chemically recycled plastic products
  • Table 26. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes
  • Table 27. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE)
  • Table 28. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP)
  • Table 29. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET)
  • Table 30. Plastic yield of each chemical recycling technologies
  • Table 31. Chemically recycled plastics prices in USD
  • Table 32. Challenges in the advanced chemical recycling market
  • Table 33. Applications of chemically recycled materials
  • Table 34. Summary of non-catalytic pyrolysis technologies
  • Table 35. Summary of catalytic pyrolysis technologies
  • Table 36. Summary of pyrolysis technique under different operating conditions
  • Table 37. Biomass materials and their bio-oil yield
  • Table 38. Biofuel production cost from the biomass pyrolysis process
  • Table 39. Pyrolysis companies and plant capacities, current and planned
  • Table 40. Summary of gasification technologies
  • Table 41. Advanced recycling (Gasification) companies
  • Table 42. Summary of dissolution technologies
  • Table 43. Advanced recycling (Dissolution) companies
  • Table 44. Depolymerisation processes for PET, PU, PC and PA, products and yields
  • Table 45. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 46. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 47. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 48. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 49. Summary of aminolysis technologies
  • Table 50. Advanced recycling (Depolymerisation) companies and capacities (current and planned)
  • Table 51. Overview of hydrothermal cracking for advanced chemical recycling
  • Table 52. Overview of Pyrolysis with in-line reforming for advanced chemical recycling
  • Table 53. Overview of microwave-assisted pyrolysis for advanced chemical recycling
  • Table 54. Overview of plasma pyrolysis for advanced chemical recycling
  • Table 55. Overview of plasma gasification for advanced chemical recycling
  • Table 56. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages
  • Table 57. Retention rate of tensile properties of recovered carbon fibres by different recycling processes
  • Table 58. Recycled carbon fiber producers, technology and capacity
  • Table 59. Current thermoset recycling routes
  • Table 60. Companies developing advanced thermoset recycing routes

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes
  • Figure 2. Coca-Cola PlantBottle-R
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives
  • Figure 5. The circular plastic economy
  • Figure 6. Current management systems for waste plastics
  • Figure 7. Overview of the different circular pathways for plastics
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Figure 20. Market map for advanced plastics recycling
  • Figure 21. Value chain for advanced plastics recycling market
  • Figure 22. Schematic layout of a pyrolysis plant
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 24. Schematic for Pyrolysis of Scrap Tires
  • Figure 25. Used tires conversion process
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling
  • Figure 27. Total syngas market by product in MM Nm3/h of Syngas, 2021
  • Figure 28. Overview of biogas utilization
  • Figure 29. Biogas and biomethane pathways
  • Figure 30. SWOT analysis-gasification for advanced recycling
  • Figure 31. SWOT analysis-dissoluton for advanced recycling
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling
  • Figure 38. NewCycling process
  • Figure 39. ChemCyclingTM prototypes
  • Figure 40. ChemCycling circle by BASF
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process
  • Figure 42. Cassandra Oil process
  • Figure 43. CuRe Technology process
  • Figure 44. MoReTec
  • Figure 45. Chemical decomposition process of polyurethane foam
  • Figure 46. OMV ReOil process
  • Figure 47. Schematic Process of Plastic Energy's TAC Chemical Recycling
  • Figure 48. Easy-tear film material from recycled material
  • Figure 49. Polyester fabric made from recycled monomers
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right)
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process
  • Figure 52. The Velocys process
  • Figure 53. The Proesa-R Process
  • Figure 54. Worn Again products.