全球工业元宇宙市场(2025-2035)
市场调查报告书
商品编码
1551911

全球工业元宇宙市场(2025-2035)

The Global Industrial Metaverse Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 717 Pages, 90 Tables, 71 Figures | 订单完成后即时交付

价格

工业元宇宙有可能彻底改变製造业、物流业、运输业和公用事业等产业,使它们变得更聪明、更有效率、更永续。到 2035 年,工业元宇宙应用的市场规模可能会超过 1500 亿美元,大量投资将用于支援技术和流程,以提高生产力,透过 AI/ML 功能支援的 VR/AR/MR 和 5G 技术加速绿色转型,并为客户创造附加价值。

工业元宇宙代表着实体工业运作与沉浸式数位技术的融合,为製造、维护、培训和协作创造了新的典范。与消费级元宇宙应用不同,工业元宇宙优先考虑实际的业务成果和营运效率。工业元宇宙的核心是一个数位生态系统,其中实体资产、生产流程和供应链被镜像为虚拟复製品。这些数位孪生使组织能够即时模拟、监控和优化工业运作。工程师可以在对实体系统进行更改之前使用虚拟模型,从而显着降低与实体原型设计相关的成​​本和风险。

为工业元宇宙提供动力的技术堆迭包括 VR/AR、物联网感测器、AI、云端运算和 5G 连接。这使得物理和数位环境之间的互动变得无缝,创造出身临其境的体验,使工作人员能够可视化复杂的数据并跨越地理界限进行协作。

工业元宇宙的主要用途包括:

  • 远端维护和修理。技术人员可以在维修设备时使用 AR 获得视觉指导,从而提高首次修復率并降低差旅成本。
  • 针对危险或复杂的流程进行沉浸式训练模拟,且不影响安全或设备
  • 虚拟设计评审,全球团队在共享虚拟空间中协作处理 3D 模型
  • 透过即时监控和预测分析优化生产
  • 视觉化与管理分散式营运中的供应链

西门子、通用电气和波音等工业巨头已经采用了元宇宙技术,并且看到了显着的营运改进。例如,一些製造商报告设计时间减少了 30%,维护效率提高了 25%。工业元宇宙代表了工业运作构思、执行和管理方式的根本转变。透过创造反映实体营运的持久数位环境,组织可以实现前所未有的协作、效率和创新水平。随着技术的成熟和标准的演变,工业元宇宙将越来越成为一种固有的竞争优势,而不是一个未来的概念。儘管在互通性、安全性和劳动力适应性等领域仍然存在课题,但很明显,工业元宇宙正在成为工业转型的下一个前沿,为设计、建构和维护物理世界的方式创造新的可能性。

本报告深入研究了快速发展的工业元宇宙格局,并探讨了这种技术范式转变如何改变製造业、工程学和医疗保健等关键工业部门。

目录

第 1 章执行摘要

  • 工业元宇宙的定义
  • 从工业 4.0 到工业元宇宙的演变
  • 工业元宇宙生态系统
  • 使元宇宙成为现实的技术
  • 实现工业元宇宙
  • 当前市场情势

第二章 市场概览

  • 市场演变
  • 市场规模与成长率
  • 与相关市场(物联网、AR/VR 等)进行比较
  • 投资趋势
  • 关键市场推动因素
  • 技术进步
  • 对提高效率和生产力的需求
  • 远距工作与协作趋势
  • 永续性与环境议题
  • 市场课题与障碍
  • 工业元宇宙中的机遇

第三章:技术格局

  • 实现工业元宇宙的核心技术
  • 新科技及其潜在影响
  • 技术采用趋势和预测

第四章 最终用途市场

  • 硬体
  • 人工智慧和分析工具
  • 品质控制、检验
  • 按行业
    • 汽车
    • 航太
    • 化学和材料製造
    • 能源
    • 医学与生命科​​学
    • 建筑与工程
    • 供应链管理、物流
    • 零售

第五章 规章

  • 资料隐私与安全法规
  • 知识产权考虑因素
  • 标准与互通性工作
  • 环境与永续发展法规

第六章 社会/经济影响

  • 劳动力转型与技能需求
  • 经济成长与生产力提高
  • 永续性和环境影响
  • 道德考量与社会影响

第七章 课题与危险因子

  • 技术课题
  • 实施与整合问题
  • 网路安全风险
  • 经济与市场风险

第八章公司简介

  • VR、AR、MR(包括触觉技术)(71 家公司简介)
  • 人工智慧(136 家公司简介)
  • 区块链(31 家公司简介)
  • 边缘运算(31 家公司简介)
  • 数位孪生(48 家公司简介)
  • 3D 影像与感测(132 家公司简介)

第九章 研究方法

第 10 章词彙表

第 11 章参考文献

The Industrial Metaverse has the potential to revolutionize sectors such as manufacturing, logistics, transportation, and utilities by making them smarter, more efficient, and more sustainable. The market for industrial metaverse applications could grow to >$150 billion by 2035, with major investments being made in enabling technologies and processes to enhance productivity, accelerate green transitions through VR/AR/MR and 5G technologies supported by AI/ML capabilities, and create additional value for their customers.

The Industrial Metaverse represents the convergence of physical industrial operations with immersive digital technologies, creating a new paradigm for manufacturing, maintenance, training, and collaboration. Unlike consumer-focused metaverse applications, the industrial metaverse prioritizes practical business outcomes and operational efficiency. At its core, the industrial metaverse is a digital ecosystem where physical assets, production processes, and supply chains are mirrored as virtual replicas. These digital twins allow organizations to simulate, monitor, and optimize industrial operations in real-time. Engineers can manipulate virtual models before implementing changes to physical systems, significantly reducing costs and risks associated with physical prototyping.

The technology stack powering the industrial metaverse includes virtual and augmented reality (VR/AR), Internet of Things (IoT) sensors, artificial intelligence, cloud computing, and 5G connectivity. This enables seamless interaction between physical and digital environments, creating immersive experiences where workers can visualize complex data and collaborate across geographical boundaries.

Key applications of the industrial metaverse include:

  • Remote maintenance and repair, where technicians use AR to receive visual guidance while servicing equipment, improving first-time fix rates and reducing travel costs
  • Immersive training simulations for dangerous or complex procedures without risking safety or equipment
  • Virtual design reviews where global teams collaborate on 3D models in shared virtual spaces
  • Production optimization through real-time monitoring and predictive analytics
  • Supply chain visualization and management across distributed operations

Major industrial firms like Siemens, GE, and Boeing have already implemented metaverse technologies to achieve significant operational improvements. For example, some manufacturers report 30% reductions in design time and 25% improvements in maintenance efficiency. The industrial metaverse represents a fundamental shift in how industrial operations are conceived, executed, and managed. By creating persistent digital environments that mirror physical operations, organizations can achieve unprecedented levels of collaboration, efficiency, and innovation. As technologies mature and standards evolve, the industrial metaverse will increasingly become an essential competitive advantage rather than a futuristic concept. While challenges remain in areas of interoperability, security, and workforce adaptation, the trajectory is clear: the industrial metaverse is becoming the next frontier of industrial transformation, creating new possibilities for how we design, build, and maintain the physical world.

The Global Industrial Metaverse Market 2025-2035" provides an in-depth analysis of the rapidly evolving industrial metaverse landscape, exploring how this technological paradigm shift is transforming manufacturing, engineering, healthcare, and other key industrial sectors. This 658-page analysis examines the convergence of extended reality (XR), artificial intelligence, digital twins, IoT, and other emerging technologies that are creating immersive, collaborative industrial environments with unprecedented capabilities for optimization, training, and innovation.

Report contents include:

  • Market Growth Projections: Detailed forecasts of the industrial metaverse market from 2025 to 2035, including compound annual growth rates, regional analysis, and segment-specific growth patterns.
  • Market Overview: Detailed examination of market evolution, size, growth rate by component/technology/industry/region, investment landscape, drivers, challenges, and opportunities.
  • Technology Landscape: Comprehensive examination of core enabling technologies including XR (AR/VR/MR), artificial intelligence, industrial IoT, 5G/6G networks, edge computing, blockchain, and 3D scanning/modeling.
  • Industry Adoption Analysis: Sector-by-sector breakdown of industrial metaverse implementation across automotive, aerospace, chemicals, energy, healthcare, construction, supply chain, and retail industries.
  • End Use Markets: Comprehensive breakdown by hardware components, AI tools, and industry-specific applications with current commercial examples.
  • Investment Trends: Analysis of venture capital, corporate investments, and government funding initiatives driving industrial metaverse development globally.
  • Technological Challenges: Critical assessment of current technological limitations, integration complexities, skill gaps, security concerns, and cost barriers.
  • Future Opportunities: Exploration of emerging business models, sustainability applications, enhanced customer experiences, and novel use cases in non-traditional industries.
  • Regulatory Landscape: Analysis of data privacy, intellectual property, standards development, and environmental regulations affecting industrial metaverse deployment.
  • Implementation Case Studies: Real-world examples of successful industrial metaverse applications across manufacturing, product development, training, maintenance, and quality control.
  • Market Evolution Timeline: Projected adoption curves from 2025-2035 across short-term, medium-term, and long-term implementation horizons.
  • Societal and Economic Impact: Assessment of workforce transformation, economic growth potential, sustainability implications, and ethical considerations.
  • Challenges and Risk Factors: Critical examination of technological, implementation, cybersecurity, and economic barriers to adoption.
  • Company Profiles: Detailed analysis of over 460 companies including AAC Technologies, ABB, Accelink, Acer, Acuity, Advantech, Aeva, AEye, Ag Leader, Airy3D, Aistorm, Aize, Akselos, Alphabet (Google), Altair, Amazon Web Services (AWS), AMD, AnonyBit, Ansys, Apple, Arm, ArborXR, Artec 3D, Artilux, Axelera AI, Axera Semiconductor, Baidu, Balyo, Baraja, Basemark, Beamagine, BenQ, bHaptics, BlackShark.ai, Blaize, Blippar, BlockCypher, Bosch, BrainChip, Cambridge Mechatronics, Cambricon, Casper Labs, Celestial AI, Cepton, Cerebras Systems, Certik, Chainalysis, Circulor, Clique, Cognite, Cognizant, ConsenSys, Cosmo Tech, Coupa Software, CyDeploy, Dassault Systemes, DataMesh, Deep Optics, DeepX, DeGirum, Dexory, Dexta Robotics, DigiLens, Dispelix, d-Matrix, Dune Analytics, EdgeConneX, EdgeCortix, Edge Impulse, Emersya, EnCharge AI, Enflame, Expedera, Expivi, FARO Technologies, Fetch.ai, Finboot, Flex Logix, FuriosaAI, Gauzy, General Electric, GrAI Matter Labs, Graphcore, GreyOrange, Groq, Hailo, HaptX, Headspace, Hexa 3D, Hexagon, Hikvision, HOLOGATE, Hololight, Horizon Robotics, HTC Vive, Huawei, IBM, ImmersiveTouch, Infinite Reality, Inkron, Intel, Intellifusion, IoTeX, JigSpace, Kalima, Kalray, Kentik, Kinara, Kneron, Kongsberg, Kura Technologies, Leica Geosystems, Lenovo, LetinAR, Leucine, Lightmatter, Limbak, Litmus, Locusview, Loft Dynamics, LucidAI, Lumen Technologies, Lumibird, Luminar, Luminous XR, Lumus, Lynx, Magic Leap, MathWorks, Matterport, MaxxChain, MediaTek, Medivis, Meta, MicroOLED, Microsoft, MindMaze, Mojo Vision, Moore Threads, Morphotonics, Mythic, Native AI, NavVis, Neara, Nextech3D, Niantic, NVIDIA, NXP Semiconductors, Oculi, Omnivision, Oorym, Optinvent, Orbbec, Ouster, PassiveLogic, pgEdge, Photoneo, Pimax, Plexigrid, Presagis, Prevu3D, Prophesee, Q Bio, Qualcomm, Quanergy, Rain, Rapyuta Robotics, RealWear, Red 6, RoboSense, Rokid, R3, Rypplzz, Samsung, SambaNova Systems, Sapeon, Sarcos, Scantinel Photonics, Schott AG, Seeq, Sentera, SiLC, Siemens, SiMa.ai, Solitorch, Space and Time, Spherity, Story Protocol, Swave Photonics, Tachyum, Taqtile, TensorFlow, Tenstorrent, Tesla, Threedium, TRM Labs, TruLife Optics, TWAICE, TwinUp, Unity, Varjo, Veerum, vHive, VividQ, VNTANA, VRelax, Vuzix, Web3Firewall, Windup Minds, Worlds, Xaba, Xpanceo, Yizhu Technology, Zama, ZEDEDA, Zebra Technologies, Zivid, zkPass, and Zvision, spanning hardware manufacturers, software developers, system integrators, connectivity providers, AI specialists, blockchain innovators, XR device makers, sensor companies, robotics firms, edge computing providers, and digital twin platforms.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Definition of the Industrial Metaverse
    • 1.1.1. Key Characteristics
    • 1.1.2. Differentiation from the Consumer Metaverse
  • 1.2. Evolution of Industry 4.0 to the Industrial Metaverse
    • 1.2.1. Technological Convergence
  • 1.3. Industrial metaverse ecosystem
  • 1.4. Metaverse enabling technologies
    • 1.4.1. Artificial Intelligence
    • 1.4.2. Cross, Virtual, Augmented and Mixed Reality
    • 1.4.3. Blockchain
    • 1.4.4. Edge computing
    • 1.4.5. Cloud computing
    • 1.4.6. Digital Twin
    • 1.4.7. 3D Modeling/Scanning
    • 1.4.8. Industrial Internet of Things (IIoT)
  • 1.5. Industrial Metaverse Implementations
  • 1.6. Current Market Landscape

2. MARKET OVERVIEW

  • 2.1. Market Evolution
    • 2.1.1. Precursors to the Industrial Metaverse
      • 2.1.1.1. Virtual Reality in Industrial Design
      • 2.1.1.2. Augmented Reality in Manufacturing
      • 2.1.1.3. Digital Twin Concepts in Industry 4.0
    • 2.1.2. Transition from Industry 4.0 to Industrial Metaverse
    • 2.1.3. Unmet business needs addressed by the metaverse
    • 2.1.4. Convergence of Physical and Digital Realms
    • 2.1.5. Shift from Connectivity to Immersive Experiences
    • 2.1.6. Evolution of Human-Machine Interaction
  • 2.2. Market Size and Growth Rate
    • 2.2.1. Total market
    • 2.2.2. By component
    • 2.2.3. By technology
    • 2.2.4. End-User Industry
    • 2.2.5. Regional Market Dynamics
  • 2.3. Comparison with Related Markets (e.g., IoT, AR/VR)
  • 2.4. Investment Landscape
    • 2.4.1. Venture Capital Funding
    • 2.4.2. Corporate Investments
    • 2.4.3. Government and Public Funding Initiatives
  • 2.5. Key Market Drivers
  • 2.6. Technological Advancements
    • 2.6.1. Improvements in XR Hardware
    • 2.6.2. Advancements in AI and Machine Learning
    • 2.6.3. 5G and Edge Computing Proliferation
    • 2.6.4. Industry 4.0 Initiatives
      • 2.6.4.1. Smart Factory Implementations
      • 2.6.4.2. Digital Transformation Strategies
      • 2.6.4.3. Industrial IoT Adoption
  • 2.7. Demand for Increased Efficiency and Productivity
    • 2.7.1. Cost Reduction Imperatives
    • 2.7.2. Quality Improvement Initiatives
    • 2.7.3. Time-to-Market Acceleration
  • 2.8. Remote Work and Collaboration Trends
    • 2.8.1. Impact of Global Events
    • 2.8.2. Distributed Workforce Management
    • 2.8.3. Cross-border Collaboration Needs
  • 2.9. Sustainability and Environmental Concerns
    • 2.9.1. Carbon Footprint Reduction Goals
    • 2.9.2. Resource Optimization Efforts
    • 2.9.3. Circular Economy Initiatives
  • 2.10. Market Challenges and Barriers
    • 2.10.1. Technological Limitations
      • 2.10.1.1. Hardware Constraints (e.g., Battery Life, Comfort)
      • 2.10.1.2. Software Integration Complexities
      • 2.10.1.3. Latency and Bandwidth Issues
    • 2.10.2. Integration Complexities
      • 2.10.2.1. Legacy System Compatibility
      • 2.10.2.2. Interoperability Standards
      • 2.10.2.3. Data Integration and Management
    • 2.10.3. Skill Gaps and Workforce Readiness
      • 2.10.3.1. Technical Skill Shortages
      • 2.10.3.2. Change Management Challenges
      • 2.10.3.3. Training and Education Needs
    • 2.10.4. Data Security and Privacy Concerns
      • 2.10.4.1. Cybersecurity Risks
      • 2.10.4.2. Intellectual Property Protection
      • 2.10.4.3. Regulatory Compliance Challenges
    • 2.10.5. High Initial Investment Costs
      • 2.10.5.1. Infrastructure Setup Expenses
      • 2.10.5.2. Software Licensing and Development Costs
      • 2.10.5.3. ROI Justification Challenges
  • 2.11. Opportunities in the Industrial Metaverse
    • 2.11.1. New Business Models
      • 2.11.1.1. Industrial Metaverse-as-a-Service
      • 2.11.1.2. Virtual Asset Marketplaces
      • 2.11.1.3. Subscription-based Digital Twin Services
    • 2.11.2. Sustainability and Green Initiatives
      • 2.11.2.1. Virtual Prototyping for Reduced Material Waste
      • 2.11.2.2. Energy Optimization through Digital Twins
      • 2.11.2.3. Sustainable Supply Chain Simulations
    • 2.11.3. Enhanced Customer Experiences
      • 2.11.3.1. Immersive Product Demonstrations
      • 2.11.3.2. Virtual Factory Tours
      • 2.11.3.3. Customized Product Configuration in VR
    • 2.11.4. Emerging Markets and Applications
      • 2.11.4.1. Industrial Metaverse in Developing Economies
      • 2.11.4.2. Integration with Emerging Technologies (e.g., Quantum Computing)
      • 2.11.4.3. Novel Use Cases in Non-Traditional Industries

3. TECHNOLOGY LANDSCAPE

  • 3.1. Core Technologies Enabling the Industrial Metaverse
    • 3.1.1. Extended Reality (XR): AR, VR, and MR
      • 3.1.1.1. Head-Mounted Displays (HMDs)
      • 3.1.1.2. Haptic Devices
      • 3.1.1.3. Companies
    • 3.1.2. Artificial Intelligence and Machine Learning
      • 3.1.2.1. Deep Learning in Industrial Applications
        • 3.1.2.1.1. Convolutional Neural Networks (CNNs)
        • 3.1.2.1.2. Recurrent Neural Networks (RNNs)
        • 3.1.2.1.3. Generative Adversarial Networks (GANs)
      • 3.1.2.2. Natural Language Processing
      • 3.1.2.3. Computer Vision
      • 3.1.2.4. Companies
    • 3.1.3. Internet of Things (IoT) and Industrial IoT (IIoT)
      • 3.1.3.1. Sensor Technologies
      • 3.1.3.2. Data Collection and Analysis
      • 3.1.3.3. Edge Computing in IIoT
      • 3.1.3.4. Companies
    • 3.1.4. 5G and Beyond (6G) Networks
      • 3.1.4.1. Ultra-Low Latency Communication
        • 3.1.4.1.1. Network Slicing
        • 3.1.4.1.2. Mobile Edge Computing (MEC)
      • 3.1.4.2. Massive Machine-Type Communications
      • 3.1.4.3. Enhanced Mobile Broadband
      • 3.1.4.4. Companies
    • 3.1.5. Edge Computing and Cloud Infrastructure
      • 3.1.5.1. Hybrid Cloud Solutions in Edge Computing
      • 3.1.5.2. Edge AI in Edge Computing and Cloud Infrastructure
      • 3.1.5.3. Companies
    • 3.1.6. Blockchain and Distributed Ledger Technologies
      • 3.1.6.1. Smart Contracts in Blockchain and Distributed Ledger Technologies
      • 3.1.6.2. Supply Chain Traceability in Blockchain and DLT
      • 3.1.6.3. Decentralized Finance in Industry
      • 3.1.6.4. Companies
    • 3.1.7. 3D Scanning/Modeling
      • 3.1.7.1. Overview
      • 3.1.7.2. Companies
  • 3.2. Emerging Technologies and Their Potential Impact
    • 3.2.1. Quantum Computing
      • 3.2.1.1. Companies
    • 3.2.2. Brain-Computer Interfaces
      • 3.2.2.1. Non-invasive BCI Technologies
      • 3.2.2.2. Neural Control of Industrial Systems
      • 3.2.2.3. Cognitive Load Monitoring
      • 3.2.2.4. Companies
    • 3.2.3. Advanced Materials and Nanotechnology
      • 3.2.3.1. Smart Materials for Sensors
      • 3.2.3.2. Nanotech in Manufacturing
      • 3.2.3.3. Self-healing Materials
    • 3.2.4. Human-Machine Interfaces in the Industrial Metaverse
    • 3.2.5. Edge Computing in the Industrial Metaverse
    • 3.2.6. Autonomous Systems and Robotics
      • 3.2.6.1. Collaborative Robots (Cobots)
      • 3.2.6.2. Swarm Robotics
      • 3.2.6.3. Biomimetic Robots
      • 3.2.6.4. Companies
  • 3.3. Technology Adoption Trends and Forecasts
    • 3.3.1. Short-term Adoption (2025-2028)
      • 3.3.1.1. Technology Readiness Levels
      • 3.3.1.2. Early Adopter Industries
    • 3.3.2. Medium-term Adoption (2029-2032)
      • 3.3.2.1. Scaling Successful Implementations
      • 3.3.2.2. Cross-industry Technology Transfer
      • 3.3.2.3. Standardization and Interoperability Efforts
    • 3.3.3. Long-term Adoption (2033-2035)
      • 3.3.3.1. Mainstream Integration
      • 3.3.3.2. Disruptive Business Models
      • 3.3.3.3. Societal and Economic Impacts

4. END USE MARKETS

  • 4.1. Hardware
    • 4.1.1. XR Devices
    • 4.1.2. Sensors and Actuators
    • 4.1.3. Industrial PCs and Servers
    • 4.1.4. Communication Infrastructure for the Industrial Metaverse
    • 4.1.5. AR/VR/MR Solutions
  • 4.2. AI and Analytics Tools
  • 4.3. Quality Control and Inspection
  • 4.4. By industry
    • 4.4.1. Automotive
      • 4.4.1.1. Overview
      • 4.4.1.2. Current commercial examples
    • 4.4.2. Aerospace
      • 4.4.2.1. Overview
      • 4.4.2.2. Current commercial examples
    • 4.4.3. Chemicals and materials manufacturing
      • 4.4.3.1. Overview
      • 4.4.3.2. Current commercial examples
    • 4.4.4. Energy
      • 4.4.4.1. Overview
      • 4.4.4.2. Current commercial examples
    • 4.4.5. Healthcare and life sciences
      • 4.4.5.1. Overview
      • 4.4.5.2. Current commercial examples
    • 4.4.6. Construction and engineering
      • 4.4.6.1. Overview
      • 4.4.6.2. Current commercial examples
    • 4.4.7. Supply Chain Management and Logistics
      • 4.4.7.1. Overview
      • 4.4.7.2. Current commercial examples
    • 4.4.8. Retail
      • 4.4.8.1. Overview
      • 4.4.8.2. Current commercial examples

5. REGULATIONS

  • 5.1. Data Privacy and Security Regulations
  • 5.2. Intellectual Property Considerations
  • 5.3. Standards and Interoperability Initiatives
  • 5.4. Environmental and Sustainability Regulations

6. SOCIETAL AND ECONOMIC IMPACT

  • 6.1. Workforce Transformation and Skill Requirements
  • 6.2. Economic Growth and Productivity Gains
  • 6.3. Sustainability and Environmental Impact
    • 6.3.1.1. Energy Consumption
    • 6.3.1.2. E-Waste
    • 6.3.1.3. Virtual Economies and Blockchain
    • 6.3.1.4. Reduction in Pollution
  • 6.4. Ethical Considerations and Social Implications

7. CHALLENGES AND RISK FACTORS

  • 7.1. Technological Challenges
  • 7.2. Implementation and Integration Issues
  • 7.3. Cybersecurity Risks
  • 7.4. Economic and Market Risks

8. COMPANY PROFILES

  • 8.1. Virtual, Augmented and Mixed Reality (including haptics)(71 company profiles)
  • 8.2. Artificial Intelligence 428 (136 company profiles)
  • 8.3. Blockchain (31 company profiles)
  • 8.4. Edge computing. 561 (31 company profiles)
  • 8.5. Digital Twin(48 company profiles)
  • 8.6. 3D Imaging and Sensing(132 company profiles)

9. RESEARCH METHODOLOGY

10. GLOSSARY OF TERMS

11. REFERENCES

List of Tables

  • Table 1. Comparison of the consumer and industrial metaverses
  • Table 2. Metaverse Enabling Technologies
  • Table 3. Comparison of Key Features: Major Industrial Metaverse Platforms
  • Table 4. Augmented Reality in Manufacturing
  • Table 5. Digital Twin Concepts in Industry 4.0
  • Table 6. Differences between Industry 4.0 and the Industrial Metaverse
  • Table 7. Unmet Business Needs Addressed by the Metaverse
  • Table 8. Maturity/development of Industrial Metaverse technology building blocks
  • Table 9. Global Industrial Metaverse Market Size and Growth Rate, 2025-2035
  • Table 10. Market Share by Component (Hardware, Software, Services), 2025-2035
  • Table 11. Market Share by Technology (AR/VR/MR, Digital Twins, AI, IoT), 2025-2035
  • Table 12. Market Share by End-User Industry, 2025-2035
  • Table 13. Regional Market Size and Growth Rates, 2025-2035
  • Table 14. Cost Comparison: Traditional Industrial Processes vs. Metaverse-Enabled Processes
  • Table 15. Investment in Industrial Metaverse by Type (VC, Corporate, Government), 2020-2025
  • Table 16. Venture Capital Funding for Industrial Metaverse, 2021-2025
  • Table 17. Corporate industrial metaverse investments, 2021-2025
  • Table 18. Government and Public Funding Initiatives
  • Table 19. Key Market Drivers for the Industrial Metaverse
  • Table 20. Advancements in AI and Machine Learning
  • Table 21. Smart Factory Implementations
  • Table 22. Digital transformation strategies
  • Table 23. Industrial IoT Adoption
  • Table 24. Carbon footprint reduction
  • Table 25. Resource optimization efforts
  • Table 26. Circular economy initiatives
  • Table 27. Market challenges and barriers in the Industrial Metaverse
  • Table 28. Hardware Constraints (e.g., Battery Life, Comfort)
  • Table 29. Integration with Emerging Technologies
  • Table 30. Novel Use Cases in Non-Traditional Industries
  • Table 31. Companies in Extended Reality (XR): AR, VR, and MR
  • Table 32. Deep Learning in Industrial Applications
  • Table 33. Recurrent Neural Networks (RNNs)
  • Table 34. Natural Language Processing in Industrial Applications
  • Table 35. Computer Vision in Industrial Applications
  • Table 36. Companies in Artificial Intelligence and Machine Learning
  • Table 37. Data Collection and Analysis
  • Table 38. Edge Computing in IIoT
  • Table 39. Companies in Internet of Things (IoT) and Industrial IoT (IIoT) technologies
  • Table 40. Ultra-Low Latency Communication in 5G and Beyond (6G) Networks
  • Table 41. Massive Machine-Type Communications
  • Table 42. Enhanced Mobile Broadband in 5G and Beyond (6G) Networks
  • Table 43. Companies in 5G and Beyond (6G) Networks
  • Table 44. Hybrid Cloud Solutions
  • Table 45. Edge AI in Edge Computing and Cloud Infrastructure
  • Table 46. Companies in Edge Computing and Cloud Infrastructure
  • Table 47. Smart Contracts in Blockchain and DLT
  • Table 48. Supply Chain Traceability in Blockchain and DLT
  • Table 49. Decentralized Finance in Industry
  • Table 50. Companies in Blockchain and Distributed Ledger Technologies
  • Table 51. Applications of 3D Scanning/Modeling in the Industrial Metaverse
  • Table 52. Companies in 3D Scanning/Modeling for Industrial Metaverse Applications
  • Table 53. Quantum Computing in the Industrial Metaverse
  • Table 54. Companies in Quantum Computing
  • Table 55. Applications of Brain-Computer Interfaces in the Industrial Metaverse
  • Table 56. Non-Invasive BCI Technologies Comparison
  • Table 57. Examples of Neural Control in Industrial Systems
  • Table 58. Companies in Brain-Computer Interfaces
  • Table 59. Smart Materials for Sensors
  • Table 60. Nanotechnology Applications in Manufacturing
  • Table 61. Self-Healing Materials in Industrial Applications
  • Table 62. Human-Machine Interface Technologies in the Industrial Metaverse
  • Table 63. Edge Computing Technologies in the Industrial Metaverse
  • Table 64. Companies in Autonomous Systems and Robotics for the Industrial Metaverse
  • Table 65. Adoption Stages and Timeframes
  • Table 66. Technology Readiness Levels (TRL) for Industrial Metaverse Applications
  • Table 67. Adoption Rates of Industrial Metaverse Technologies by Industry, 2025-2035
  • Table 68. Advanced materials used in industrial metaverse hardware
  • Table 69. Types of Hardware in the Industrial Metaverse
  • Table 70. XR Devices in the Industrial Metaverse
  • Table 71. Sensors and Actuators in the Industrial Metaverse
  • Table 72. Industrial PCs and Servers in the Industrial Metaverse
  • Table 73. Communication Infrastructure for the Industrial Metaverse
  • Table 74. AR/VR/MR Solutions in the Industrial Metaverse
  • Table 75. AR/VR/MR Solutions in the Industrial Metaverse
  • Table 76. Quality Control and Inspection in the Industrial Metaverse
  • Table 77. Commercial Examples of the Industrial Metaverse in Automotive
  • Table 78. Commercial Examples of the Industrial Metaverse in Aerospace
  • Table 79. Commercial Examples of the Industrial Metaverse in Chemicals and Materials Manufacturing
  • Table 80. Commercial Examples of the Industrial Metaverse in Energy
  • Table 81. Commercial Examples of the Industrial Metaverse in Healthcare and Life Sciences
  • Table 82. Commercial Examples of the Industrial Metaverse in Construction and Engineering
  • Table 83. Commercial Examples of the Industrial Metaverse in Supply Chain Management and Logistics
  • Table 84. Commercial Examples of the Industrial Metaverse in Retail
  • Table 85. Data Privacy and Security Regulations Impacting the Industrial Metaverse
  • Table 86. Standards and Interoperability Initiatives for the Industrial Metaverse
  • Table 87. Environmental and Sustainability Regulations Impacting the Industrial Metaverse
  • Table 88. Technological Challenges in the Industrial Metaverse
  • Table 89. Implementation and Integration Issues in the Industrial Metaverse
  • Table 90. Industrial Metaverse Glossary of Terms

List of Figures

  • Figure 1. Example industrial metaverse operations
  • Figure 2. Components of the industrial metaverse
  • Figure 3. Evolution of Industry 4.0 to the Industrial Metaverse
  • Figure 4. Industrial metaverse ecosystem
  • Figure 5. Microsoft HoloLens in industrial setting
  • Figure 6. Architecture of Mobile Edge Computing-Based Metaverse
  • Figure 7. System Architecture for 6G and metaverse using cloud computing
  • Figure 8. Digital twins in the industrial metaverse
  • Figure 9. Industrial Internet of Things
  • Figure 10. VR-based industrial training session
  • Figure 11. Use of AR in manufacturing
  • Figure 12. 3D Model: Digital twin of a manufacturing plant
  • Figure 13. Infographic: IoT sensors in an industrial setting
  • Figure 14. Global Industrial Metaverse Market Size, 2025-2035
  • Figure 15. Market Share by Component (Hardware, Software, Services), 2025-2035
  • Figure 16. Market Share by Technology (AR/VR/MR, Digital Twins, AI, IoT), 2025-2035
  • Figure 17. Market Share by End-User Industry, 2025-2035
  • Figure 18. Investment in Industrial Metaverse by Type (VC, Corporate, Government), 2020-2025
  • Figure 19. Edge computing in industrial applications
  • Figure 20. Smart factory ecosystem
  • Figure 21. Head-Mounted Display used in on-site operations
  • Figure 22. Wearable textile device with haptic technology
  • Figure 23. The Differences between IoT and IIoT
  • Figure 24. Brain-computer interface for industrial control
  • Figure 25. Examples of the commercial non-invasive EEG equipment based on BCI technology
  • Figure 26. Swarm of industrial robots in a warehouse
  • Figure 27. Adoption Curves of Different Industrial Metaverse Technologies
  • Figure 28. Example use of XR in manufacturing
  • Figure 29. Meta Quest Enterprise
  • Figure 30. BMW iFACTORY
  • Figure 31. Concept for using XR in surgery
  • Figure 32. Enhatch AR headset
  • Figure 33. Augmedics' xvision Spine System-R
  • Figure 34. Apple Vision Pro
  • Figure 35. bHaptics (full-body haptic suit for VR)
  • Figure 36. Dexta Robotics haptic glove
  • Figure 37. The ThinkReality A3
  • Figure 38. Microsoft HoloLens 2
  • Figure 39. Siemens digital native factory
  • Figure 40. Holographic eXtended Reality (HXR) Technology
  • Figure 41. Cerebas WSE-2
  • Figure 42. DeepX NPU DX-GEN1
  • Figure 43. InferX X1
  • Figure 44. "Warboy"(AI Inference Chip)
  • Figure 45. Google TPU
  • Figure 46. GrAI VIP
  • Figure 47. Colossus(TM) MK2 GC200 IPU
  • Figure 48. GreenWave's GAP8 and GAP9 processors
  • Figure 49. Journey 5
  • Figure 50. IBM Telum processor
  • Figure 51. 11th Gen Intel-R Core(TM) S-Series
  • Figure 52. Envise
  • Figure 53. Pentonic 2000
  • Figure 54. Meta Training and Inference Accelerator (MTIA)
  • Figure 55. Azure Maia 100 and Cobalt 100 chips
  • Figure 56. Mythic MP10304 Quad-AMP PCIe Card
  • Figure 57. Nvidia H200 AI chip
  • Figure 58. Grace Hopper Superchip
  • Figure 59. Panmnesia memory expander module (top) and chassis loaded with switch and expander modules (below)
  • Figure 60. Cloud AI 100
  • Figure 61. Peta Op chip
  • Figure 62. Cardinal SN10 RDU
  • Figure 63. MLSoC(TM)
  • Figure 64. Grayskull
  • Figure 65. Tesla D1 chip
  • Figure 66. Colossus(TM) MK2 GC200 IPU
  • Figure 67. Azure Maia 100 and Cobalt 100 chips
  • Figure 68. Mythic MP10304 Quad-AMP PCIe Card
  • Figure 69. Orion dot pattern projector
  • Figure 70. A 12-inch wafer made using standard semiconductor processes contains thousands of metasurface optics
  • Figure 71. Prophesee Metavision starter kit - AMD Kria KV260 and active marker LED board