锂离子电池回收的全球市场(2025年~2040年)
市场调查报告书
商品编码
1555075

锂离子电池回收的全球市场(2025年~2040年)

The Global Li-ion Battery Recycling Market 2025-2040

出版日期: | 出版商: Future Markets, Inc. | 英文 177 Pages, 29 Tables, 30 Figures, 98 Companies profiled | 订单完成后即时交付

价格

电动车和再生能源储存系统的日益普及推动了锂离子电池回收市场的发展。随着锂离子电池的需求持续飙升,可持续的 EOL 解决方案变得至关重要。向电气化的转变是交通产业脱碳的关键部分。为了支持这项转型和成长,电动车电池原料的稳定供应以及建立可持续的废弃电池收集和回收系统至关重要。

预计未来 10 年回收市场将大幅扩张,数量和收入预计将大幅增加。这一成长的主要驱动力包括严格的环境法规、原材料成本上涨以及对循环经济准则的日益重视。世界各国政府正在实施鼓励电池回收的政策,而製造商也越来越认识到从废弃电池中回收有价值的材料所带来的经济和环境效益。

市场格局的特点是老牌公司和创新新创公司混合在一起,每家公司都开发独特的技术来提高回收效率和降低成本。湿式冶金、火法冶金和直接回收技术正在改进和扩大规模,以满足不断增长的需求。此外,机械化学预处理和电化学方法等新技术不断涌现,有望提高回收率并减少对环境的影响。

本报告提供全球锂离子电池回收市场相关调查分析,提供今后10年的市场趋势,技术的进步,成长机会等相关知识和见解。

目录

第1章 简介

  • 锂离子电池
    • 所谓锂离子电池
    • 锂离子正极
    • 锂离子负极
    • 电池故障
    • EOL
    • 永续性
  • 电动车(EV)市场
    • 替换用电池组的新兴市场
    • EV电池的封闭迴路型价值链
  • 锂离子电池回收的价值链
  • 循环型生命週期
  • 全球法规和政策
    • 中国
    • 欧洲联盟
    • 美国
    • 印度
    • 韩国
    • 日本
    • 澳洲
    • 运输
  • 永续性和环境的利益

第2章 回收的手法和技术

  • 黑色粉末
  • 回收不同的阴极化学物质
  • 准备工作
  • 预处理
    • 放电
    • 机械预处理
    • 热处理预处理
  • 回收技术比较
  • 湿式冶金
    • 手法概要
    • SWOT分析
  • 干式冶金
    • 手法概要
    • SWOT分析
  • 直接回收
    • 手法概要
    • SWOT分析
  • 其他的手法
    • 机械化学性事前处理
    • 电化学手法
    • 离子液体
  • 特定零组件的回收
    • 负极(石墨)
    • 正极
    • 电解质
  • 锂离子电池以外的回收
    • 传统的流程和新的流程
    • 锂金属电池
    • 锂硫电池(Li-S)
    • 全固体电池(ASSB)

第3章 市场分析

  • 推动市场要素
  • 市场课题
  • 目前市场
  • 近几年的市场新闻,资金筹措,发展
  • 锂离子电池回收的经济利益
    • 金属的价格
    • 二次能源储存
    • LFP电池
    • 其他的零组件和材料
    • 降低成本
  • 竞争情形
  • 供应链
  • 全球处理能力,现行和计划中
  • 未来预测
  • 全球市场(2018年~2040年)
    • 化学
    • 千吨
    • 收益
    • 地区

第4章 企业简介(企业98公司的简介)

第5章 用语和定义

第6章 调查手法

第7章 参考文献

The market for lithium-ion battery recycling is driven by the increasing adoption of electric vehicles and renewable energy storage systems. As the demand for lithium-ion batteries continues to surge, the need for sustainable end-of-life solutions has become critical. The shift towards electrification is a crucial part of decarbonizing the mobility sector. To support this transition and growth, it is imperative to establish a stable supply of raw materials for electric vehicle batteries and a sustainable end-of-life battery collection and recycling system.

The recycling market is expected to expand significantly over the next decade, with projections indicating a substantial increase in both volume and revenue. Key factors fueling this growth include stringent environmental regulations, the rising cost of raw materials, and a growing emphasis on circular economy principles. Governments worldwide are implementing policies to encourage battery recycling, while manufacturers are increasingly recognizing the economic and environmental benefits of recovering valuable materials from spent batteries.

The market landscape is characterized by a mix of established players and innovative start-ups, each developing unique technologies to improve recycling efficiency and reduce costs. Hydrometallurgical, pyrometallurgical, and direct recycling methods are being refined and scaled up to meet the growing demand. Additionally, new techniques such as mechanochemical pre-treatment and electrochemical methods are emerging, promising higher recovery rates and lower environmental impact.

"The Global Li-ion Battery Recycling Market 2025-2035" is a comprehensive market research report that provides an in-depth analysis of the rapidly growing lithium-ion battery recycling industry. This report offers valuable insights into market trends, technological advancements, and growth opportunities in the global Li-ion battery recycling market over the next decade.

Key highlights of the report include:

  • Market Overview and Forecasts: The report provides detailed market size estimates and projections from 2025 to 2035, segmented by recycling technology, battery chemistry, and geographical region. It offers a comprehensive analysis of market drivers, restraints, opportunities, and challenges shaping the industry's future.
  • Technology Analysis: An in-depth examination of current and emerging Li-ion battery recycling technologies, including their strengths, weaknesses, opportunities, and threats (SWOT analysis).
  • Application Insights: The study explores various applications of recycled materials across multiple sectors, including electric vehicles, consumer electronics, and energy storage systems.
  • Competitive Landscape: A comprehensive analysis of key players in the Li-ion battery recycling market, including their recycling technologies, market strategies, and recent developments. The report profiles leading companies and emerging startups shaping the industry's future. Companies profiled include 24M, 4R Energy Corporation, ACE Green Recycling, Inc., Accurec Recycling GmbH, AE Elemental, Akkuser Oy, Allye Energy, Altilium, American Battery Technology Company (ABTC), Anhua Taisen, Aqua Metals, Inc., Ascend Elements, Attero Recycling, BASF, Battery Pollution Technologies, Batrec Industrie AG, Battri, Batx Energies Private Limited, BMW, Botree Cycling, CATL, Cirba Solutions, Circu Li-ion, Circunomics, Cylib, Dowa Eco-System Co., EcoBat, Econili Battery, EcoPro, Electra Battery Materials Corporation (Electra), Emulsion Flow Technologies, Energy Source, Enim, Eramet, ExPost Technology, Farasis Energy, Fortum Battery Recycling, Ganfeng Lithium, Ganzhou Cyclewell Technology Co. Ltd, GEM Co., Ltd., GLC RECYCLE PTE. LTD., Glencore, Gotion, Green Li-ion, Green Mineral, GS Group, Guangdong Guanghua Sci-Tech, Huayou Cobalt, HydroVolt, InoBat, Inmetco, J-Cycle, Inc., Jiecheng New Energy, JX Nippon Metal Mining, Keyking Recycling, Korea Zinc, Kyoei Seiko, LG Chem Ltd., Li Industries, Li-Cycle, Lithion Technologies, Lohum, Mecaware, Metastable Materials, Mitsubishi Materials, NEU Battery Materials, Nickelhutte Aue, Nth Cycle, OnTo Technology LLC, Orano, Posco HY Clean Metal, Princeton NuEnergy (PNE), ProtectLiB, RecycLiCo Battery Materials, RecycleKaro, Redivium Australia, Redwood Materials, Renewable Metals, RT Advanced Materials, Ruicycle Environmental Protection Technology, Ruilong Technology, Saidemei Resources Recycling Research Institute, Sebitchem, Shunhua Lithium, SiTration, SK Innovation Co. Ltd., Smartville Inc., Solvay, Sumitomo, Summit Nanotech, SungEel HITech, Technology Minerals plc/ Recyclus, Tozero GmbH, Umicore, Volkswagen, Voltfang, Young Poong Corp., and Zero Carbon Technologies (ZERO).
  • Future Outlook and Emerging Trends: Insights into technological advancements, potential disruptive technologies, and long-term market predictions extending to 2035 and beyond. The report identifies key growth areas and innovation hotspots in the Li-ion battery recycling industry.
  • Regional Analysis: A detailed examination of Li-ion battery recycling market dynamics across North America, Europe, Asia-Pacific, and other regions, highlighting regional adoption trends and growth opportunities.
  • Value Chain Analysis: An overview of the Li-ion battery recycling industry value chain, from battery collection to material recovery and reuse, providing a holistic view of the market ecosystem.
  • Regulatory Landscape: An examination of relevant regulations and standards affecting the development and adoption of Li-ion battery recycling technologies across different regions.

This report is an essential resource for:

  • Li-ion battery manufacturers and recyclers
  • Electric vehicle manufacturers
  • Consumer electronics companies
  • Energy storage system providers
  • Raw material suppliers and traders
  • Waste management companies
  • Investment firms and financial analysts
  • Government agencies and policymakers
  • Environmental organizations and researchers

Key features of the report include:

  • Over 100 tables and figures providing clear, data-driven insights
  • Detailed company profiles of more than 90 key players in the Li-ion battery recycling industry
  • Comprehensive market size and forecast data segmented by technology, battery chemistry, and region
  • In-depth analysis of emerging technologies and their potential impact on the market
  • Expert commentary on market trends, challenges, and opportunities

The global Li-ion battery recycling market is poised for significant growth, with increasing demand for sustainable battery lifecycle management across various industries. This report provides a thorough understanding of the current market landscape, emerging technologies, and future growth prospects, making it an invaluable tool for decision-makers looking to capitalize on opportunities in the Li-ion battery recycling sector. By leveraging extensive primary and secondary research, including interviews with industry experts and analysis of proprietary data, "The Global Li-ion Battery Recycling Market 2025-2035" offers unparalleled insights into this dynamic and rapidly evolving industry. Whether you're a technology provider, battery manufacturer, recycler, investor, or researcher, this report will equip you with the knowledge and understanding needed to navigate the exciting future of Li-ion battery recycling technologies.

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Lithium-ion batteries
    • 1.1.1. What is a Li-ion battery?
    • 1.1.2. Li-ion cathode
    • 1.1.3. Li-ion anode
    • 1.1.4. Battery failure
    • 1.1.5. End-of-life
    • 1.1.6. Sustainability
  • 1.2. The Electric Vehicle (EV) market
    • 1.2.1. Emerging market for replacement battery packs
    • 1.2.2. Closed-loop value chain for EV batteries
  • 1.3. Lithium-Ion Battery recycling value chain
  • 1.4. Circular life cycle
  • 1.5. Global regulations and policies
    • 1.5.1. China
    • 1.5.2. EU
    • 1.5.3. US
    • 1.5.4. India
    • 1.5.5. South Korea
    • 1.5.6. Japan
    • 1.5.7. Australia
    • 1.5.8. Transportation
  • 1.6. Sustainability and environmental benefits

2. RECYCLING METHODS AND TECHNOLOGIES

  • 2.1. Black mass powder
  • 2.2. Recycling different cathode chemistries
  • 2.3. Preparation
  • 2.4. Pre-Treatment
    • 2.4.1. Discharging
    • 2.4.2. Mechanical Pre-Treatment
    • 2.4.3. Thermal Pre-Treatment
  • 2.5. Comparison of recycling techniques
  • 2.6. Hydrometallurgy
    • 2.6.1. Method overview
      • 2.6.1.1. Solvent extraction
    • 2.6.2. SWOT analysis
  • 2.7. Pyrometallurgy
    • 2.7.1. Method overview
    • 2.7.2. SWOT analysis
  • 2.8. Direct recycling
    • 2.8.1. Method overview
      • 2.8.1.1. Electrolyte separation
      • 2.8.1.2. Separating cathode and anode materials
      • 2.8.1.3. Binder removal
      • 2.8.1.4. Relithiation
      • 2.8.1.5. Cathode recovery and rejuvenation
      • 2.8.1.6. Hydrometallurgical-direct hybrid recycling
    • 2.8.2. SWOT analysis
  • 2.9. Other methods
    • 2.9.1. Mechanochemical Pretreatment
    • 2.9.2. Electrochemical Method
    • 2.9.3. Ionic Liquids
  • 2.10. Recycling of Specific Components
    • 2.10.1. Anode (Graphite)
    • 2.10.2. Cathode
    • 2.10.3. Electrolyte
  • 2.11. Recycling of Beyond Li-ion Batteries
    • 2.11.1. Conventional vs Emerging Processes
    • 2.11.2. Li-Metal batteries
    • 2.11.3. Lithium sulfur batteries (Li-S)
    • 2.11.4. All-solid-state batteries (ASSBs)

3. MARKET ANALYSIS

  • 3.1. Market drivers
  • 3.2. Market challenges
  • 3.3. The current market
  • 3.4. Recent market news, funding and developments
  • 3.5. Economic case for Li-ion battery recycling
    • 3.5.1. Metal prices
    • 3.5.2. Second-life energy storage
    • 3.5.3. LFP batteries
    • 3.5.4. Other components and materials
    • 3.5.5. Reducing costs
  • 3.6. Competitive landscape
  • 3.7. Supply chain
  • 3.8. Global capacities, current and planned
  • 3.9. Future outlook
  • 3.10. Global market 2018-2040
    • 3.10.1. Chemistry
    • 3.10.2. Ktonnes
    • 3.10.3. Revenues
    • 3.10.4. Regional
      • 3.10.4.1. Europe
        • 3.10.4.1.1. Regional overview
      • 3.10.4.2. China
        • 3.10.4.2.1. Regional overview
      • 3.10.4.3. Rest of Asia-Pacific
        • 3.10.4.3.1. Regional overview
      • 3.10.4.4. North America
        • 3.10.4.4.1. Regional overview

4. COMPANY PROFILES(98 company profiles)

5. TERMS AND DEFINITIONS

6. RESEARCH METHODOLOGY

7. REFERENCES

List of Tables

  • Table 1. Lithium-ion (Li-ion) battery supply chain
  • Table 2. Commercial Li-ion battery cell composition
  • Table 3. Key technology trends shaping lithium-ion battery cathode development
  • Table 4. Cathode Materials Used in Commercial LIBs and Recycling Methods
  • Table 5. Fate of end-of-life Li-ion batteries
  • Table 6. Closed-loop value chain for electric vehicle (EV) batteries
  • Table 7. Li-ion battery recycling value chain
  • Table 8. Potential circular life cycle for lithium-ion batteries
  • Table 9. Regulations pertaining to the recycling and treatment of EOL batteries in the EU, USA, and China
  • Table 10. China regulations and policies related to batteries
  • Table 11. Sustainability and environmental benefits of Li-ion recycling
  • Table 12. Typical lithium-ion battery recycling process flow
  • Table 13. Main feedstock streams that can be recycled for lithium-ion batteries
  • Table 14. Comparison of LIB recycling methods
  • Table 15. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries
  • Table 16. Market drivers for lithium-ion battery recycling
  • Table 17. Market challenges in lithium-ion battery recycling
  • Table 18. Recent market news, funding and developments in Li-ion battery recycling
  • Table 19. Economic assessment of battery recycling options
  • Table 20. Retired lithium-batteries
  • Table 21. Global capacities, current and planned (tonnes/year)
  • Table 22. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2018-2040
  • Table 23. Global Li-ion battery recycling market, 2018-2040 (ktonnes)
  • Table 24. Global Li-ion battery recycling market, 2018-2040 (billions USD)
  • Table 25. Li-ion battery recycling market, by region, 2018-2040 (ktonnes)
  • Table 26. Li-ion battery recycling market, in Europe, 2018-2040 (ktonnes)
  • Table 27. Li-ion battery recycling market, in China, 2018-2040 (ktonnes)
  • Table 28. Li-ion battery recycling market, in Rest of Asia-Pacific, 2018-2040 (ktonnes)
  • Table 29. Li-ion battery recycling market, in North America, 2018-2040 (ktonnes)

List of Figures

  • Figure 1. Li-ion battery cell pack
  • Figure 2. Lithium Cell Design
  • Figure 3. Functioning of a lithium-ion battery
  • Figure 4. LIB cathode recycling routes
  • Figure 5. Lithium-ion recycling process
  • Figure 6. Process for recycling lithium-ion batteries from EVs
  • Figure 7. Circular life cycle of lithium ion-batteries
  • Figure 8. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials
  • Figure 9. Mechanical separation flow diagram
  • Figure 10. Recupyl mechanical separation flow diagram
  • Figure 11. Flow chart of recycling processes of lithium-ion batteries (LIBs)
  • Figure 12. Hydrometallurgical recycling flow sheet
  • Figure 13. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling
  • Figure 14. Umicore recycling flow diagram
  • Figure 15. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling
  • Figure 16. Schematic of direct recyling process
  • Figure 17. SWOT analysis for Direct Li-ion Battery Recycling
  • Figure 18. Schematic diagram of a Li-metal battery
  • Figure 19. Schematic diagram of Lithium-sulfur battery
  • Figure 20. Schematic illustration of all-solid-state lithium battery
  • Figure 21. Li-ion Battery Recycling Market Supply Chain
  • Figure 22. Global scrapped EV (BEV+PHEV) forecast to 2040
  • Figure 23. Global Li-ion battery recycling market, 2018-2040 (chemistry)
  • Figure 24. Global Li-ion battery recycling market, 2018-2040 (ktonnes)
  • Figure 25. Global Li-ion battery recycling market, 2018-2040 (Billion USD)
  • Figure 26. Global Li-ion battery recycling market, by region, 2018-2040 (ktonnes)
  • Figure 27. Li-ion battery recycling market, in Europe, 2018-2040 (ktonnes)
  • Figure 28. Li-ion battery recycling market, in China, 2018-2040 (ktonnes)
  • Figure 29. Li-ion battery recycling market, in Rest of Asia-Pacific, 2018-2040 (ktonnes)
  • Figure 30. Li-ion battery recycling market, in North America, 2018-2040 (ktonnes)