木质素生医材料·生化的全球市场(2025年~2035年)
市场调查报告书
商品编码
1565353

木质素生医材料·生化的全球市场(2025年~2035年)

The Global Market for Lignin Biomaterials & Biochemicals 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 188 Pages, 28 Tables, 53 Figures | 订单完成后即时交付

价格

木质素是仅次于纤维素的第二丰富的天然聚合物,在世界向可持续生物基材料的转变中迅速变得越来越重要。木质素是纸浆造纸工业和生物精炼厂的副产品,是一种巨大的可再生资源,但历史上一直未被充分利用。人们越来越关注减少对化石材料的依赖和推广循环经济解决方案,这增加了木质素作为多功能生物材料和有价值的生物化学品来源的潜力,引起了人们的关注。木质素生物材料和生物化学品的重要性在于它们能够在多个行业中取代石油基产品。木质素结构复杂,富含芳香族化合物,使其成为有价值的化学品和材料的理想前体。木质素的潜在应用范围从生物燃料和生物塑料到碳纤维和储能材料,为汽车、建筑、包装和电子等行业提供了可持续的替代品。

木质素衍生产品的市场前景越来越光明。由于环境法规收紧、消费者对永续产品需求的增加以及木质素萃取和改质製程的技术进步等因素,全球木质素市场预计在未来几年将显着成长。碳纤维和芳香化学品等高价值应用由于其显着的环境效益和相对于传统材料的性能优势而特别有望增长。

随着世界各地的工业寻求石油基产品的可持续替代品,木质素正在成为一种具有多种应用前景的生物基材料。

本报告针对全球木质素生物材料和生化产品市场进行研究和分析,提供市场规模和预测、区域市场动态、未来前景、公司简介等。

目录

第1章 调查手法

第2章 简介

  • 所谓木质素
    • 木质素结构
  • 木质素:各类型
    • 含硫木质素
    • 来自生物精炼製程的无硫木质素
  • 特性
  • 木质纤维素生物炼製厂
  • 市场与用途
  • 市场课题

第3章 木质素生产流程

  • 原料的事前处理
  • 转换流程
    • 热化学的转换
    • 化学的转换
    • 生物学的转换
    • 电化学转换
  • 木质磺酸盐
    • 概要
    • SWOT分析
  • 硫酸盐木质素
    • 概要
    • LignoBoost流程
    • LignoForce法
    • 连续液体木质素回收,精製
    • A-Recovery+
    • SWOT分析
  • 钠盐木质素
    • 概要
    • SWOT分析
  • 生物炼製厂木质素
    • 产品萃取/纯化
    • 木质纤维素生物精炼经济
    • 商业和预商业生物精炼木质素生产设施和工艺
    • SWOT分析
    • 有机溶胶木质素
    • 水解木质素
    • 蒸煮爆碎木质素
  • 木质素奈米粒子
  • 木质素系碳材料
  • 脱聚合木质素产品
  • 木质素来历的生质塑胶

第4章 木质素的市场

  • 市场促进因素和趋势
  • 木质素产业的发展(2020年~2024年)
  • 生产能力
    • 技术性木质素利用可能性(干燥,吨/年)
    • 生物质转换(生物炼製厂)
  • 木质素消费
    • 各类型
    • 各市场
  • 各地区
  • 价格
  • 市场与用途
    • 环境热能,电力·能源
    • 生质油
    • 合成气
    • 芳香族化合物
    • 聚合物
    • 水凝胶
    • 炭材料费
    • 建设材料
    • 橡胶
    • 沥青,柏油
    • 燃料
    • 能源储存
    • 粘合剂,乳化剂,分散剂
    • 螯合剂
    • 涂料
    • 陶瓷
    • 汽车
    • 阻燃剂
    • 抗氧化剂
    • 润滑剂
    • dust控制

第5章 企业简介(企业94公司的简介)

第6章 参考文献

Lignin, the second most abundant natural polymer after cellulose, is rapidly gaining importance in the global shift towards sustainable and bio-based materials. As a by-product of the pulp and paper industry and biorefineries, lignin represents a vast, renewable resource that has been historically underutilized. The growing focus on reducing dependence on fossil-based materials and the push for circular economy solutions have spotlighted lignin's potential as a versatile biomaterial and a source of valuable biochemicals. The importance of lignin biomaterials and biochemicals lies in their ability to replace petroleum-based products across multiple industries. Lignin's complex structure, rich in aromatic compounds, makes it an ideal precursor for high-value chemicals and materials. Its potential applications range from biofuels and bioplastics to carbon fibers and energy storage materials, offering sustainable alternatives in sectors such as automotive, construction, packaging, and electronics.

Market prospects for lignin-based products are increasingly promising. The global lignin market is expected to grow significantly in the coming years, driven by factors such as increased environmental regulations, growing consumer demand for sustainable products, and technological advancements in lignin extraction and modification processes. High-value applications, such as carbon fibers and aromatic chemicals, are particularly poised for growth, as they offer substantial environmental benefits and performance advantages over traditional materials.

This comprehensive market report provides an in-depth analysis of the global lignin market, covering the period from 2025 to 2035. As industries worldwide seek sustainable alternatives to petroleum-based products, lignin has emerged as a promising bio-based material with diverse applications.

Report Contents include:

  • Introduction to Lignin
    • Definition and structure of lignin
    • Types of lignin (sulfur-containing, sulfur-free)
    • Properties and characteristics
    • The lignocellulose biorefinery concept
    • Current markets and applications
    • Market challenges
  • Lignin Production Processes
    • Feedstock preprocessing
    • Conversion processes (thermochemical, chemical, biological, electrochemical)
    • Detailed analysis of lignin types:
      • Lignosulfonates
      • Kraft lignin
      • Soda lignin
      • Biorefinery lignin (including organosolv, hydrolytic, and steam-exploded lignin)
    • Emerging technologies: lignin nanoparticles, lignin-based carbon materials, depolymerized lignin products, and lignin-based bioplastics
  • Market Analysis
    • Market drivers and trends
    • Industry developments (2020-2024)
    • Production capacities (technical lignin and biorefinery lignin)
    • Consumption patterns by lignin type, market, and region
    • Pricing trends
  • Markets and Applications
    • Energy (heat and power, bio-oils, syngas)
    • Aromatic compounds (BTX, phenol, vanillin)
    • Polymers and hydrogels
    • Carbon materials (carbon black, activated carbons, carbon fiber)
    • Construction materials
    • Rubber, bitumen, and asphalt
    • Fuels
    • Energy storage (supercapacitors, lithium-ion batteries)
    • Binders, emulsifiers, and dispersants
    • Coatings and ceramics
    • Automotive applications
    • Specialty applications (fire retardants, antioxidants, lubricants, dust control)
  • Company Profiles: Detailed profiles of key players and emerging companies in the lignin market. Companies profiled include Aemetis, Andritz, Anellotech, Attis Innovations, Avantium, Blue Biofuels, Bloom Biorenewables, Boreal Bioproducts, Borregaard Group, Bright Day Graphene, Burgo Group, Carbon Crusher, Cellicon, CH-Bioforce, Chempolis, CIMV, Clariant, Domsjo Fabriker, Domtar Paper Company, Enerkem, Enviral, Fibenol, FiberX, FP Innovations, Fraunhofer CBP, Fraunhofer LBF, Futurity Bio-Ventures, G+E GETEC Holding, Global Bioenergies, Graanul Invest, Granbio Technologies, Hexion, Ingevity, Iogen, Kanematsu, Kanteleen Voima, Klabin, Koehler Group, Leaf Resources, Ligna Energy, LignEasy, Lignin Industries, Lignoflow Technologies, Lignolix, Lignomateria, LignOrganic, Lignovations, LignoPure, Liquid Lignin Company, Lixea, LXP Group, Mehler Engineered Products, Mercer International, Metgen, Mobius, NewEnergyBlue, Nippon Paper Industries, Novozymes, Obayashi, ORLEN Poludnie, Praj Industries, Prefere Resins Holding, Prisma Renewable Composites, Proligreen........and more.
  • Comprehensive Market Data: The report provides detailed market size data, growth projections, and revenue forecasts for various segments of the lignin market from 2025 to 2035.
  • Regional Analysis: Breakdown of lignin consumption by region, providing a global perspective on market dynamics.
  • Future Outlook: Analysis of emerging applications and potential future developments in the lignin market.
  • Detailed SWOT analyses for different types of lignin, helping stakeholders understand the strengths, weaknesses, opportunities, and threats in various market segments.
  • Analysis of biorefinery lignin, including commercial and pre-commercial production facilities and processes, highlighting the shift towards more sustainable and efficient lignin production methods.
  • Exploration of high-value applications such as carbon fibers, energy storage materials, and aromatic compounds, showcasing lignin's potential to replace petroleum-based products.
  • Insights into market drivers and challenges, including regulatory factors, technological advancements, and changing consumer preferences.
  • Examination of lignin's role in the circular bioeconomy and its potential to contribute to sustainability goals across industries.

Who Should Read This Report:

  • Executives and strategists in the chemical and materials industries
  • Researchers and R&D professionals in biomaterials and green chemistry
  • Investors and financial analysts focusing on sustainable technologies
  • Policy makers and regulators in the fields of renewable materials and bioeconomy
  • Sustainability officers in industries such as packaging, construction, and automotive
  • Procurement specialists looking for bio-based alternatives to traditional materials

Table of Contents

1. RESEARCH METHODOLOGY

2. INTRODUCTION

  • 2.1. What is lignin?
    • 2.1.1. Lignin structure
  • 2.2. Types of lignin
    • 2.2.1. Sulfur containing lignin
    • 2.2.2. Sulfur-free lignin from biorefinery process
  • 2.3. Properties
  • 2.4. The lignocellulose biorefinery
  • 2.5. Markets and applications
  • 2.6. Market challenges

3. LIGNIN PRODUCTION PROCESSES

  • 3.1. Feedstock Preprocessing
  • 3.2. Conversion Processes
    • 3.2.1. Thermochemical Conversion
    • 3.2.2. Chemical Conversion
    • 3.2.3. Biological Conversion
    • 3.2.4. Electrochemical Conversion
  • 3.3. Lignosulphonates
    • 3.3.1. Description
    • 3.3.2. SWOT analysis
  • 3.4. Kraft Lignin
    • 3.4.1. Description
    • 3.4.2. LignoBoost process
    • 3.4.3. LignoForce method
    • 3.4.4. Sequential Liquid Lignin Recovery and Purification
    • 3.4.5. A-Recovery+
    • 3.4.6. SWOT analysis
  • 3.5. Soda lignin
    • 3.5.1. Description
    • 3.5.2. SWOT analysis
  • 3.6. Biorefinery lignin
    • 3.6.1. Products Extraction & Purification
    • 3.6.2. Lignocellulose Biorefinery Economics
    • 3.6.3. Commercial and pre-commercial biorefinery lignin production facilities and processes
    • 3.6.4. SWOT analysis
    • 3.6.5. Organosolv lignin
      • 3.6.5.1. Description
      • 3.6.5.2. SWOT analysis
    • 3.6.6. Hydrolytic lignin
      • 3.6.6.1. Description
      • 3.6.6.2. SWOT analysis
    • 3.6.7. Steam Exploded Lignin
      • 3.6.7.1. Description
      • 3.6.7.2. SWOT analysis
  • 3.7. Lignin nanoparticles
  • 3.8. Lignin-based carbon materials
  • 3.9. Depolymerized lignin products
  • 3.10. Lignin-based bioplastics

4. MARKETS FOR LIGNIN

  • 4.1. Market drivers and trends
  • 4.2. Lignin industry developments 2020-2024
  • 4.3. Production capacities
    • 4.3.1. Technical lignin availability (dry ton/y)
    • 4.3.2. Biomass conversion (Biorefinery)
  • 4.4. Consumption of lignin
    • 4.4.1. By type
    • 4.4.2. By market
  • 4.5. By region
  • 4.6. Prices
  • 4.7. Markets and applications
    • 4.7.1. Heat and power energy
    • 4.7.2. Bio-oils
    • 4.7.3. Syngas
    • 4.7.4. Aromatic compounds
      • 4.7.4.1. Benzene, toluene and xylene
      • 4.7.4.2. Phenol and phenolic resins
      • 4.7.4.3. Vanillin
    • 4.7.5. Polymers
    • 4.7.6. Hydrogels
      • 4.7.6.1. Adhesives
    • 4.7.7. Carbon materials
      • 4.7.7.1. Carbon black
      • 4.7.7.2. Activated carbons
      • 4.7.7.3. Carbon fiber
    • 4.7.8. Construction materials
    • 4.7.9. Rubber
    • 4.7.10. Bitumen and Asphalt
    • 4.7.11. Fuels
    • 4.7.12. Energy storage
      • 4.7.12.1. Supercapacitors
      • 4.7.12.2. Anodes for lithium-ion batteries
      • 4.7.12.3. Gel electrolytes for lithium-ion batteries
      • 4.7.12.4. Binders for lithium-ion batteries
      • 4.7.12.5. Cathodes for lithium-ion batteries
      • 4.7.12.6. Sodium-ion batteries
    • 4.7.13. Binders, emulsifiers and dispersants
    • 4.7.14. Chelating agents
    • 4.7.15. Coatings
    • 4.7.16. Ceramics
    • 4.7.17. Automotive
    • 4.7.18. Fire retardants
    • 4.7.19. Antioxidants
    • 4.7.20. Lubricants
    • 4.7.21. Dust control

5. COMPANY PROFILES (94 company profiles)

6. REFERENCES

List of Tables

  • Table 1. Properties of lignins and their applications
  • Table 2. Technical lignin types and applications
  • Table 3. Classification of technical lignins
  • Table 4. Properties of lignin, by type
  • Table 5. Lignin content of selected biomass
  • Table 6. Markets and applications for lignin
  • Table 7. Market challenges for lignin
  • Table 8. Processes for lignin production
  • Table 9. Biorefinery feedstocks
  • Table 10. Comparison of pulping and biorefinery lignins
  • Table 11. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 12. Markets for lignin
  • Table 13. Market drivers and trends for lignin
  • Table 14. Lignin industry developments 2020-2024
  • Table 15. Production capacities of technical lignin producers
  • Table 16. Production capacities of biorefinery lignin producers
  • Table 17. Estimated consumption of lignin, by type, 2019-2035 (00,000 Tons)
  • Table 18. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Table 19. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Table 20. Lignin aromatic compound products
  • Table 21. Prices of benzene, toluene, xylene and their derivatives
  • Table 22. Lignin products in polymeric materials
  • Table 23. Application of lignin in plastics and composites
  • Table 24. Applications of lignin in construction materials
  • Table 25. Lignin applications in rubber and elastomers
  • Table 26. Lignin products in fuels
  • Table 27. Lignin-derived anodes in lithium batteries
  • Table 28. Application of lignin in binders, emulsifiers and dispersants

List of Figures

  • Figure 1. Wood processing within the Kraft process
  • Figure 2. High purity lignin
  • Figure 3. Lignocellulose architecture
  • Figure 4. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins
  • Figure 5. The lignocellulose biorefinery
  • Figure 6. Lignocellulosic biomass conversion and products
  • Figure 7. Lignosulfonates SWOT analysis
  • Figure 8. LignoBoost process
  • Figure 9. LignoForce system for lignin recovery from black liquor
  • Figure 10. Sequential liquid-lignin recovery and purification (SLPR) system
  • Figure 11. A-Recovery+ chemical recovery concept
  • Figure 12. Kraft lignin SWOT analysis
  • Figure 13. Soda lignin SWOT analysis
  • Figure 14. Schematic of a biorefinery for production of carriers and chemicals
  • Figure 15. Biorefinery lignin SWOT analysis
  • Figure 16. Organosolv lignin
  • Figure 17. Organosolv lignin SWOT analysis
  • Figure 18. Hydrolytic lignin powder
  • Figure 19. Hydrolytic lignin SWOT analysis
  • Figure 20. Steam Exploded Lignin SWOT analysis
  • Figure 21. Estimated consumption of lignin, by type, 2019-2035 (00,000 Tons)
  • Figure 22. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Figure 23. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Figure 24. Schematic of WISA plywood home
  • Figure 25. Lignin based activated carbon
  • Figure 26. Lignin/celluose precursor
  • Figure 27. Functional rubber filler made from lignin
  • Figure 28. Road repair utilizing lignin
  • Figure 29. Prototype of lignin based supercapacitor
  • Figure 30. Stora Enso lignin battery materials
  • Figure 31. ANDRITZ Lignin Recovery process
  • Figure 32. DAWN Technology Process
  • Figure 33. BALITM technology
  • Figure 34. Pressurized Hot Water Extraction
  • Figure 35. sunliquid-R production process
  • Figure 36. Domsjo process
  • Figure 37. TMP-Bio Process
  • Figure 38. Flow chart of the lignocellulose biorefinery pilot plant in Leuna
  • Figure 39. AVAPTM process
  • Figure 40. GreenPower+TM process
  • Figure 41. Renol in packaging
  • Figure 42. Lignin gel
  • Figure 43. BioFlex process
  • Figure 44. LX Process
  • Figure 45. METNINTM Lignin refining technology
  • Figure 46. Enfinity cellulosic ethanol technology process
  • Figure 47: Plantrose process
  • Figure 48. Hansa lignin
  • Figure 49. Stora Enso lignin battery materials
  • Figure 50. Solid Novolac Type lignin modified phenolic resins
  • Figure 51. UPM biorefinery process
  • Figure 52. The Proesa-R Process
  • Figure 53. Goldilocks process and applications