The thermal management materials and systems market is experiencing significant growth driven by multiple sectors. Key market segments include consumer electronics, electric vehicles, data centers, ADAS sensors, EMI shielding, 5G/6G telecommunications, aerospace, and energy systems. The market features diverse materials including thermal interface materials (TIMs) such as greases, gels, pastes, phase change materials (PCMs), thermal pads, gap fillers, adhesives, carbon-based materials, and metallic solutions.
Electric vehicles represent a particularly dynamic segment, with increasing demand for sophisticated thermal management solutions for batteries, power electronics, and motors. The transition to 800V architectures and higher-power charging systems is driving innovation in cooling technologies. Data centers are another crucial market, with growing power densities necessitating more effective cooling solutions. The trend toward immersion cooling and hybrid systems reflects the industry's need for more efficient thermal management approaches. The emergence of 5G/6G infrastructure has created new thermal challenges, particularly in antenna systems and base stations. Similarly, the ADAS sensor market requires increasingly sophisticated thermal solutions as sensor capabilities expand. Looking toward 2035, the market shows strong growth potential across all segments, with particular emphasis on:
- Advanced materials with higher thermal conductivity
- Integrated cooling systems
- Sustainable and environmentally friendly solutions
- Smart thermal management systems with AI/ML capabilities
- Novel approaches like immersion cooling and phase change materials
"The Global Thermal Management Materials and Systems 2025-2035" provides detailed insights into the rapidly evolving thermal management materials and systems industry, covering crucial applications across electric vehicles, data centers, consumer electronics, and emerging technologies. The comprehensive analysis includes market forecasts, technological developments, and competitive landscapes through 2035.
Report contents in:
- In-depth analysis of thermal interface materials (TIMs), including greases, phase change materials, thermal pads, and advanced carbon-based solutions
- Detailed examination of cooling technologies: liquid cooling, air cooling, immersion cooling, and hybrid systems
- Comprehensive coverage of electric vehicle thermal management, including battery, power electronics, and motor cooling solutions
- Analysis of data center cooling trends, from traditional air cooling to advanced immersion systems
- Evaluation of emerging technologies in 5G/6G infrastructure cooling
- Assessment of aerospace and defense thermal management applications
- Market opportunities in ADAS sensors and EMI shielding
- Market size and growth projections
- Technology trends and innovation analysis
- Competitive landscape and company profiles. Companies profiled include 3M, Accelsius, ADA Technologies, Adept Materials, Airthium, Aismalibar, AI Technology, Amphenol Advanced Sensors, Andores New Energy, AOK Technologies, AOS Thermal Compounds, Apheros, Arkema, Arieca, Arteco, Asahi Kasei, Aspen Aerogels, Asperitas, ATP Adhesive Systems, Axalta Coating Systems, Axiotherm, Azelio, Bando Chemical Industries, Beam Global, BNNano, BNNT LLC, Boyd Corporation, BYK, Cadenza Innovation, Calyos, Carrar, Carbice Corp, Carbon Waters, Carbodeon, Chilldyne, Climator Sweden, CondAlign, Croda Europe, Cryopak, Dana, Datum Phase Change, Detakta, Devan Chemicals, Dexerials, Dober, Dow Corning, Dupont (Laird Performance Materials), Dymax, ELANTAS Europe, Deyang Carbonene Technology, Elkem Silicones, e-Mersiv, Elkem, Enerdyne Thermal Solutions, Engineered Fluids, Epoxies Etc, Ewald Dorken AG, Exergyn, First Graphene, FUCHS, Fujipoly, Fujitsu Laboratories, GLPOLY, Global Graphene Group, Graphmatech, Green Revolution Cooling (GRC), GuangDong KingBali, HALA Contec, Hamamatsu Carbonics, Goodfellow, Hangzhou Ruhr New Material Technology, H.B. Fuller, HeatVentors, Henkel, Honeywell, Huber Martinswerk, HyMet Thermal Interfaces, Iceotope, Immersion4, Indium Corporation, Inkron, Inuteq, JetCool Technologies, JIOS Aerogel, Kerafol, Kitagawa, KULR Technology Group, Leader Tech, LiquidCool Solutions, LiquidStack, Liquid Wire, LiSAT, MAHLE, Materium Technologies and more.
- Regional market analysis
- Application-specific requirements and solutions
- Material developments and emerging technologies
- Regulatory framework and environmental considerations
Detailed segments covered include:
- Thermal Interface Materials
- Heat Spreaders and Heat Sinks
- Liquid Cooling Systems
- Air Cooling Solutions
- Cooling Plates
- Spray Cooling Technology
- Immersion Cooling Systems
- Phase Change Materials
- Coolant Fluids
Applications analyzed include:
- Electric Vehicle Battery Systems
- Data Center Infrastructure
- Consumer Electronics
- 5G/6G Communications
- Aerospace Systems
- ADAS Sensors
- Power Electronics
- EMI Shielding
TABLE OF CONTENTS
1. INTRODUCTION
- 1.1. Thermal management
- 1.1.1. Active
- 1.1.2. Passive
- 1.2. Thermal Management Systems
- 1.2.1. Immersion Cooling Systems for Data Centers
- 1.2.2. Battery Thermal Management for Electric Vehicles
- 1.2.3. Heat Exchangers for Aerospace Cooling
- 1.2.4. Air Cooling Systems
- 1.2.5. Liquid Cooling Systems
- 1.2.6. Vapor Compression Systems
- 1.2.7. Spray Cooling Systems
- 1.2.8. Hybrid Cooling Systems
- 1.2.8.1. Hybrid Liquid-to-Air Cooling
- 1.2.8.2. Hybrid Liquid-to-Liquid Cooling
- 1.2.8.3. Hybrid Liquid-to-Refrigerant Cooling
- 1.2.8.4. Hybrid Refrigerant-to-Refrigerant Cooling
- 1.3. Main types of thermal management materials and technologies
2. THERMAL INTERFACE MATERIALS
- 2.1. What are thermal interface materials (TIMs)?
- 2.1.1. Types
- 2.1.2. Thermal conductivity
- 2.2. Comparative properties of TIMs
- 2.3. Advantages and disadvantages of TIMs, by type
- 2.4. Prices
- 2.5. Thermal greases and pastes
- 2.6. Thermal gap pads
- 2.7. Thermal gap fillers
- 2.8. Thermal adhesives and potting compounds
- 2.9. Metal-based TIMs
- 2.9.1. Solders and low melting temperature alloy TIMs
- 2.9.2. Liquid metals
- 2.9.3. Solid liquid hybrid (SLH) metals
- 2.9.3.1. Hybrid liquid metal pastes
- 2.9.3.2. SLH created during chip assembly (m2TIMs)
- 2.10. Carbon-based TIMs
- 2.10.1. Multi-walled nanotubes (MWCNT)
- 2.10.1.1. Properties
- 2.10.1.2. Application as thermal interface materials
- 2.10.2. Single-walled carbon nanotubes (SWCNTs)
- 2.10.2.1. Properties
- 2.10.2.2. Application as thermal interface materials
- 2.10.3. Vertically aligned CNTs (VACNTs)
- 2.10.3.1. Properties
- 2.10.3.2. Applications
- 2.10.3.3. Application as thermal interface materials
- 2.10.4. BN nanotubes (BNNT) and nanosheets (BNNS)
- 2.10.4.1. Properties
- 2.10.4.2. Application as thermal interface materials
- 2.10.5. Graphene
- 2.10.5.1. Properties
- 2.10.5.2. Application as thermal interface materials
- 2.10.5.2.1. Graphene fillers
- 2.10.5.2.2. Graphene foam
- 2.10.5.2.3. Graphene aerogel
- 2.10.6. Nanodiamonds
- 2.10.6.1. Properties
- 2.10.6.2. Application as thermal interface materials
- 2.10.7. Graphite
- 2.10.7.1. Properties
- 2.10.7.2. Natural graphite
- 2.10.7.2.1. Classification
- 2.10.7.2.2. Processing
- 2.10.7.2.3. Flake
- 2.10.7.2.3.1. Grades
- 2.10.7.2.3.2. Applications
- 2.10.7.3. Synthetic graphite
- 2.10.7.3.1. Classification
- 2.10.7.3.1.1. Primary synthetic graphite
- 2.10.7.3.1.2. Secondary synthetic graphite
- 2.10.7.3.1.3. Processing
- 2.10.7.4. Applications as thermal interface materials
- 2.10.8. Hexagonal Boron Nitride
- 2.10.8.1. Properties
- 2.10.8.2. Application as thermal interface materials
- 2.11. Metamaterials
- 2.11.1. Types and properties
- 2.11.1.1. Thermal metamaterials
- 2.11.1.2. Electromagnetic metamaterials
- 2.11.1.2.1. Double negative (DNG) metamaterials
- 2.11.1.2.2. Single negative metamaterials
- 2.11.1.2.3. Electromagnetic bandgap metamaterials (EBG)
- 2.11.1.2.4. Bi-isotropic and bianisotropic metamaterials
- 2.11.1.2.5. Chiral metamaterials
- 2.11.1.2.6. Electromagnetic "Invisibility" cloak
- 2.11.1.3. Terahertz metamaterials
- 2.11.1.4. Photonic metamaterials
- 2.11.1.5. Tunable metamaterials
- 2.11.1.6. Frequency selective surface (FSS) based metamaterials
- 2.11.1.7. Nonlinear metamaterials
- 2.11.1.8. Acoustic metamaterials
- 2.11.2. Application as thermal interface materials
- 2.12. Self-healing thermal interface materials
- 2.12.1. Extrinsic self-healing
- 2.12.2. Capsule-based
- 2.12.3. Vascular self-healing
- 2.12.4. Intrinsic self-healing
- 2.12.5. Healing volume
- 2.12.6. Types of self-healing materials, polymers and coatings
- 2.12.7. Applications in thermal interface materials
- 2.13. Phase change thermal interface materials (PCTIMs)
- 2.13.1. Thermal pads
- 2.13.2. Low Melting Alloys (LMAs)
- 2.14. Global Market forecast 2020-2035
3. HEAT SPREADERS AND HEAT SINKS
- 3.1. Design
- 3.2. Materials
- 3.2.1. Aluminum alloys
- 3.2.2. Copper
- 3.2.3. Metal foams
- 3.2.4. Metal matrix composites
- 3.2.5. Graphene
- 3.2.6. Carbon foams and nanotubes
- 3.2.7. Graphite
- 3.2.8. Diamond
- 3.2.9. Liquid immersion cooling
- 3.2.10. Applications
- 3.3. Challenges
- 3.4. Market forecast
4. LIQUID COOLING SYSTEMS
- 4.1. Design
- 4.2. Types
- 4.3. Components of Liquid Cooling Systems
- 4.4. Cooling in Data Centers
- 4.4.1. Rack Level
- 4.4.2. Chip Level
- 4.5. Benefits
- 4.6. Challenges
- 4.7. Market forecast
5. AIR COOLING
- 5.1. Introduction
- 5.2. Air Cooling Methods
- 5.3. Commercial examples
- 5.4. Optimization of water and power consumption
- 5.5. Applications
- 5.6. Market forecast
6. COOLING PLATES
- 6.1. Overview
- 6.1.1. Advanced cooling plates
- 6.1.2. Roll Bond Aluminium Cold Plates
- 6.1.3. Cold Plate Design
- 6.1.4. Commercial examples
- 6.1.5. Graphite heat spreaders
- 6.1.5.1. Commercial examples
- 6.1.6. Cold Plate/Direct to Chip Cooling
- 6.1.7. Liquid Cooling Cold Plates
- 6.1.8. Single-Phase Cold Plate
- 6.1.8.1. Commercial examples
- 6.1.9. Two-Phase Cold Plate
- 6.1.9.1. Commercial examples
- 6.2. Design
- 6.3. Enhancement Techniques
- 6.4. Applications
- 6.5. Market forecast
7. SPRAY COOLING
- 7.1. Overview
- 7.2. Heat Transfer Mechanisms
- 7.3. Spray Cooling Fluids
- 7.4. Applications
- 7.5. Market forecast
8. IMMERSION COOLING
- 8.1. Overview
- 8.2. Common immersion fluids
- 8.3. Benefits
- 8.4. Single-Phase Immersion Cooling
- 8.5. Two-Phase Immersion Cooling
- 8.6. Commercial examples
- 8.7. Costs
- 8.8. Challenges
- 8.9. Market forecast
9. THERMOELECTRIC COOLERS
- 9.1. Thermoelectric Modules
- 9.2. Performance Factors
- 9.3. Electronics Cooling
10. COOLANT FLUIDS
- 10.1. Overview
- 10.1.1. Properties
- 10.1.1.1. Electrical
- 10.1.1.2. Corrosion
- 10.1.1.3. Viscosity reduction
- 10.2. EVs
- 10.2.1. Coolant Fluid Requirements
- 10.2.2. Common EV Coolant Fluids
- 10.2.3. Commercial examples
- 10.2.4. Refrigerants for EVs
- 10.2.5. EV coolant fluid trends
- 10.2.6. Design Considerations
- 10.3. Growing adoption of immersion cooling
- 10.4. Market forecast
11. PHASE CHANGE MATERIALS
- 11.1. Properties of Phase Change Materials (PCMs)
- 11.2. Types
- 11.2.1. Organic/biobased phase change materials
- 11.2.1.1. Advantages and disadvantages
- 11.2.1.2. Paraffin wax
- 11.2.1.3. Non-Paraffins/Bio-based
- 11.2.2. Inorganic phase change materials
- 11.2.2.1. Salt hydrates
- 11.2.2.1.1. Advantages and disadvantages
- 11.2.2.2. Metal and metal alloy PCMs (High-temperature)
- 11.2.3. Eutectic mixtures
- 11.2.4. Encapsulation of PCMs
- 11.2.4.1. Macroencapsulation
- 11.2.4.2. Micro/nanoencapsulation
- 11.2.5. Nanomaterial phase change materials
- 11.3. Thermal energy storage (TES)
- 11.3.1. Sensible heat storage
- 11.3.2. Latent heat storage
- 11.4. Battery Thermal Management
- 11.5. Market forecast
12. MARKETS FOR THERMAL MANAGEMENT MATERIALS AND SYSTEMS
- 12.1. Consumer electronics
- 12.1.1. Market overview
- 12.1.2. Market drivers
- 12.1.3. Applications
- 12.1.3.1. Smartphones and tablets
- 12.1.3.2. Wearable electronics
- 12.1.4. Global market revenues 2020-2035
- 12.2. Electric Vehicles (EV)
- 12.2.1. Overview
- 12.2.2. Electric vehicle thermal system architecture and components
- 12.2.3. Commercial vehicle thermal management systems
- 12.2.3.1. Transition to 800V architecture
- 12.2.4. Market drivers
- 12.2.5. EV Cooling
- 12.2.5.1. Coolant Fluids
- 12.2.5.1.1. Properties
- 12.2.5.1.2. Integration of battery and eAxle cooling
- 12.2.5.2. Refrigerants
- 12.2.5.2.1. PFAS Free Refrigerants
- 12.2.5.2.2. The integration of heat pump systems in EVs
- 12.2.5.3. Active vs Passive Cooling
- 12.2.5.4. Air Cooling
- 12.2.5.5. Liquid Cooling
- 12.2.5.6. Refrigerant Cooling
- 12.2.5.7. Cell-to-pack designs
- 12.2.5.8. Cell-to-chassis/body
- 12.2.5.9. Immersion Cooling
- 12.2.5.9.1. Phase Change Materials
- 12.2.5.9.2. Commercial examples
- 12.2.5.9.3. Operating Temperature
- 12.2.5.10. Heat Spreaders and Cooling Plates
- 12.2.5.10.1. Heat spreader technology
- 12.2.5.10.1.1. Commercial examples
- 12.2.5.10.1.2. Graphite Heat Spreaders
- 12.2.5.10.2. Advanced cold plates
- 12.2.5.10.2.1. Commercial examples
- 12.2.5.10.2.2. Integration of cold plates into battery enclosures
- 12.2.5.10.3. Polymer Heat Exchangers
- 12.2.5.11. Coolant Hoses
- 12.2.5.12. Thermal Interface Materials
- 12.2.5.13. Fire Protection Materials
- 12.2.5.13.1. Overview
- 12.2.5.13.2. Thermal runaway in electric vehicles
- 12.2.5.13.3. Vehicle fires
- 12.2.5.13.4. Regulations
- 12.2.5.14. Printed Sensors
- 12.2.5.15. Other cooling
- 12.2.6. Electric motors
- 12.2.6.1. Air Cooling
- 12.2.6.2. Water-glycol Cooling
- 12.2.6.3. Oil Cooling
- 12.2.6.4. Advanced cooling structures
- 12.2.6.4.1. Refrigerant Cooling
- 12.2.6.4.2. Immersion Cooling
- 12.2.6.5. Motor Insulation and Encapsulation
- 12.2.6.5.1. Commercial activity
- 12.2.6.5.2. Axial Flux Motors
- 12.2.6.5.3. In-wheel Motors
- 12.2.7. Power electronics
- 12.2.7.1. Overview
- 12.2.7.2. Technology and materials evolution
- 12.2.7.3. Power module packaging technology
- 12.2.7.4. Single- vs Double-Sided Cooling
- 12.2.7.5. TIMs in Power Electronics
- 12.2.7.5.1. Thermal Interface Material 1 (TIM1)
- 12.2.7.5.2. Thermal Interface Material 2 (TIM2)
- 12.2.7.6. Wire Bonding
- 12.2.7.7. Substrate Materials
- 12.2.7.8. Cooling Power Electronics
- 12.2.7.8.1. Inverter package cooling
- 12.2.7.8.2. Direct cooling
- 12.2.8. Charging stations
- 12.2.8.1.1. Charging Levels
- 12.2.8.1.2. Liquid Cooling
- 12.2.8.1.3. Commercial examples
- 12.2.8.1.4. Immersion Cooling
- 12.2.8.2. Cabin heating
- 12.2.8.3. Heat Pumps
- 12.2.9. Global Market Revenues 2020-2035
- 12.3. Data Centers
- 12.3.1. Market overview
- 12.3.2. Market drivers
- 12.3.3. Data Center thermal management requirements
- 12.3.3.1. Increase in Thermal Design Power (TDP)
- 12.3.3.2. Energy Efficiency
- 12.3.4. Data Center Cooling
- 12.3.4.1. Cooling Technology
- 12.3.4.2. Air Cooling
- 12.3.4.3. Hybrid Liquid-to-Air Cooling (L2A)
- 12.3.4.4. Hybrid Liquid-to-Liquid Cooling (L2L)
- 12.3.4.5. Hybrid Liquid-to-Refrigerant Cooling
- 12.3.4.6. Hybrid Refrigerant-to-Refrigerant Cooling
- 12.3.4.7. Thermal Interface Materials
- 12.3.4.7.1. Data center power supplies
- 12.3.4.8. Cold plates
- 12.3.4.9. Spray Cooling
- 12.3.4.10. Immersion Cooling
- 12.3.5. Applications
- 12.3.5.1. Router, switches and line cards
- 12.3.5.2. Servers
- 12.3.5.3. Power supply converters
- 12.3.6. Global Market Revenues 2020-2035
- 12.4. ADAS Sensors
- 12.4.1. Market overview
- 12.4.2. Market drivers
- 12.4.3. Applications
- 12.4.3.1. ADAS Cameras
- 12.4.3.2. ADAS Radar
- 12.4.3.3. ADAS LiDAR
- 12.4.4. Global Market Revenues 2020-2035
- 12.5. EMI shielding
- 12.5.1. Market overview
- 12.5.2. Market drivers
- 12.5.3. Applications
- 12.5.4. Global Market Revenues 2020-2035
- 12.6. 5G/6G
- 12.6.1. Market overview
- 12.6.2. Market drivers
- 12.6.3. Applications
- 12.6.3.1. Antenna
- 12.6.3.2. Base Band Unit (BBU)
- 12.6.4. Global Market Revenues 2020-2035
- 12.7. Aerospace
- 12.7.1. Market overview
- 12.7.2. Market drivers
- 12.7.3. Applications
- 12.7.4. Global Market Revenues 2020-2035
- 12.8. Energy systems
- 12.8.1. Market overview
- 12.8.2. Market drivers
- 12.8.3. Applications
- 12.8.4. Global Market Revenues 2020-2035
- 12.9. Other markets
- 12.9.1. Advanced Robotics
- 12.9.1.1. Design Considerations
- 12.9.1.2. Implementation Strategies
- 12.9.1.3. Advanced Cooling Technologies
- 12.9.1.4. Environmental Considerations
- 12.9.1.5. Future Trends
13. GLOBAL REVENUES
- 13.1. Global revenues 2023, by type
- 13.2. Global revenues 2024-2035, by materials type
- 13.2.1. Telecommunications market
- 13.2.2. Electronics and data centers market
- 13.2.3. ADAS market
- 13.2.4. Electric vehicles (EVs) market
- 13.3. By end-use market
- 13.4. By region
14. FUTURE MARKET OUTLOOK
15. COMPANY PROFILES (169 company profiles)
16. RESEARCH METHODOLOGY
17. REFERENCES