微射流的全球市场(2025年~2035年)
市场调查报告书
商品编码
1574328

微射流的全球市场(2025年~2035年)

The Global Microfluidics Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 295 Pages, 95 Tables, 74 Figures | 订单完成后即时交付

价格

由于医疗、製药和工业领域的创新应用,全球微流体市场到 2035 年将显示出非凡的成长潜力。这种在微观尺度上操纵流体的复杂技术继续革新传统的诊断、药物开发和製程控制方法。目前,医疗应用占据了大部分市场占有率,护理点诊断和药物研究推动了成长,而环境监测、食品安全和製程控制等工业应用则显示出巨大的扩张潜力。

材料科学、製造流程和数位整合的技术创新不断降低製造成本并增强设备功能,从而实现更广泛的市场采用。人工智慧、自动化和先进感测功能的整合创造了新的应用可能性和市场机会。主要的市场推动因素包括对快速诊断解决方案的需求不断增加、对药物研究的投资不断增加以及个人化医疗应用的扩大。随着製造流程的改进和成本的下降,热管理等传统和新应用领域的市场采用将会加速。

本报告提供全球微射流市场相关调查分析,有关2025年~2035年的市场动态,技术创新,成长机会的详细考察。

目录

第1章 摘要整理

  • 市场规模
  • 新的趋势和技术
  • 推动市场要素
    • 即时诊断的进步
    • 对个人化医疗的需求不断增长
    • 药物发现与生命科学研究的成长
    • 工业与环境监测的新应用
  • 阻碍市场要素
    • 初始成本高且製造复杂
    • 标准化和监管课题
    • 新兴市场的认知度和采用率有限
    • 在维持品质的同时扩大产量
    • 有竞争力的技术和替代解决方案
  • 市场机会
    • 将人工智慧和物联网整合到微流体设备中
    • 从实验室到工厂
    • 生物功能晶片(器官晶片)及其在 3D 细胞培养的新应用
    • 空间研究应用
    • 合成生物学
    • 先进材料的开发
    • 食品安全与品质
  • 竞争情形概要

第2章 简介

  • 微流体技术类型
    • 连续流微流体
    • 基于液滴的微流体
    • 数位微流控
    • 纸基微流体

第3章 全球市场规模与预测(2025年~2035年)

  • 市场整体规模和成长率
    • 市场规模的实际成果(2020年~2024年)
    • 市场规模的预测(2025年~2035年)
  • 市场区隔:各最终用途市场
    • 消费者市场
    • 产业市场
    • 医疗市场
  • 地区市场分析
    • 北美
    • 欧洲
    • 亚太地区
    • 其他地区

第4章 市场与应用

  • 诊断
    • 概要
    • 新趋势
    • 感染疾病
    • 肿瘤
    • 心臟
    • 其他
  • 製药,生命科学研究
    • 药物筛检
    • 基因学
    • 蛋白质体学
    • 细胞分析
  • 喷墨印刷
    • 消费者取向印刷
    • 产业印刷
    • 3D列印
  • 环境·食品安全实验
    • 水质分析
    • 食品污染物质检测
    • 土壤分析
  • 其他(案例:化妆品,农业)
    • 化妆品·个人保养品製造
    • 汽车的液体分析
    • 能源生产监测
    • 材料製造
    • 化学处理
    • 农业
  • 模组的种类
    • 微流体晶片
    • 帮浦,阀门
    • 感测器,检测器
    • 微流体滤芯
    • 其他
  • 材料
    • 聚合物
    • 玻璃晶圆
    • 硅晶圆
    • 纸,其他的材料

第5章 市场趋势

  • 消费者市场趋势
    • 喷墨列印技术的演变
    • 新型消费者诊断与健康设备
  • 产业市场趋势
    • 环境与食品安全检测的进展
    • 石油测试与农业应用
    • 电子设备冷却解决方案
  • 医疗市场趋势
    • 即时诊断的发展
    • 微流控在药物发现与开发的应用
    • 次世代定序的进展
    • 仿生系统与生物功能晶片(Organ-on-a-Chip)
    • 细胞分析与治疗应用

第6章 供应链分析

  • 原料·元件供应商
  • 微流体晶片厂商
  • 模组·设备积分器(整合者)
  • 终端用户

第7章 技术趋势与革新

  • 生物感应器的开发
    • 用于细胞治疗的光子感测器
    • 用于即时诊断的有机硅生物感测器
  • 材料的革新
    • 聚合物技术的进步
    • PDMS 替代品和混合材料
    • 玻璃和硅晶圆的创新
  • 製造趋势
    • 聚合物製造的进步
    • 硅和玻璃製造技术
    • 与后端流程集成
    • 表面处理和涂层
  • 新技术
    • 人工智慧与机器学习的集成
    • 微流控中的 3D 列印
    • 纸基微流体

第8章 法规形势

  • 微流体设备的法规结构概要
  • FDA法规(美国)
    • 微流控装置的分类
    • 上市前核准 (PMA) 流程
    • 510(k) 审核流程
  • CE标註(欧洲)
    • 医疗器材法规 (MDR)
    • 体外诊断医疗器材法规 (IVDR)
    • 合格评定程序
  • NMPA法规(中国)
    • 医疗器材註册程序
    • 临床试验要求
    • 製造和品质控制标准

第9章 未来预测与市场机会

  • 新应用程式和用例
    • 空间研究中的微流控
    • 微生物组分析与工程
  • 神经科技
    • 神经科技与脑晶片
    • 合成生物学与生物製造
    • 先进材料测试与开发
  • 生成式人工智慧对微流体的潜在影响
    • 利用人工智慧进行设计优化
    • 流体动力学预测建模
    • 自动资料分析与解释
  • 微流控在精准医疗和个人化医疗的应用
    • 液体活检和循环生物标记
    • 个人化药物筛选
    • 用于持续健康监测的微流体设备
  • 发展中国家的机遇
    • 在资源有限的环境中进行现场诊断
    • 经济实惠的农业微流体解决方案
    • 快速工业化地区的环境监测

第10章 企业简介(企业200公司的简介)

第11章 附录

第12章 参考文献

The global microfluidics market demonstrates exceptional growth potential through 2035, driven by transformative applications across healthcare, pharmaceuticals, and industrial sectors. This sophisticated technology, which manipulates fluids at microscopic scales, continues to revolutionize traditional approaches to diagnostics, drug development, and process control. Medical applications currently dominate market share, with point-of-care diagnostics and pharmaceutical research leading growth, while industrial applications in environmental monitoring, food safety, and process control show substantial expansion potential.

Technological innovations in materials science, manufacturing processes, and digital integration continue to reduce production costs and enhance device functionality, enabling broader market adoption. The integration of artificial intelligence, automation, and advanced sensing capabilities creates new application possibilities and market opportunities. Key market drivers include increasing demand for rapid diagnostic solutions, growing investment in pharmaceutical research, and expanding applications in personalized medicine. As manufacturing processes improve and costs decrease, market adoption accelerates across both traditional and emerging applications in areas such as thermal management.

"The Global Microfluidics Market 2025-2035" providing detailed insights into market dynamics, technological innovations, and growth opportunities from 2025 to 2035. Report contents include: The microfluidics market is experiencing transformative growth driven by breakthroughs in point-of-care diagnostics, drug discovery applications, and personalized medicine.

Report contents include:

  • End-Market Segmentation
    • Medical Market:
      • In-vitro diagnostics
      • Drug discovery and development
      • Genomics and proteomics
      • Point-of-care testing
      • Personalized medicine applications
      • Organ-on-chip platforms
    • Industrial Market:
      • Environmental monitoring
      • Food and beverage testing
      • Oil and gas analysis
      • Electronic cooling solutions
      • Process control applications
      • Quality assurance systems
    • Consumer Market:
      • Inkjet printing technologies
      • Consumer diagnostics
      • Wearable devices
      • Personal care applications
  • Developments across materials, manufacturing processes, and integration technologies:
    • Advanced polymer technologies
    • PDMS alternatives
    • Glass and silicon innovations
    • Paper-based platforms
    • Hybrid materials development
    • 3D printing applications
    • Injection molding innovations
    • Hot embossing techniques
    • Wafer-level packaging
    • Integration technologies
  • Emerging Technologies:
    • AI and machine learning integration
    • Biosensor developments
    • Digital microfluidics
    • Paper-based systems
    • Organ-on-chip platforms
  • Applications and Market Opportunities
    • Diagnostics:
      • Infectious disease testing
      • Oncology applications
      • Cardiovascular diagnostics
      • Neurological testing
      • Genetic screening
    • Pharmaceutical Research:
      • Drug screening platforms
      • Genomics applications
      • Proteomics research
      • Cell analysis systems
      • High-throughput screening
    • Environmental and Industrial:
      • Water quality analysis
      • Food safety testing
      • Industrial process control
      • Environmental monitoring
      • Agricultural applications
  • Market Drivers and Challenges
  • Regulatory Landscape
  • Detailed profiles of 200 companies including 3M, 10X Genomics, Abbott, AbCellera, Accelix, Achira Labs, AGC, Agilent Technologies, AgPlus Diagnostics, Akonni Biosystems, ALiA Biotech, Aline inc, Allozymes, Alveo, Amberstone Biosciences Inc., Ande Corporation, Arrayit Corporation, Astraveus, Atomica, Atrandi Biosciences, AxBio, Baebies, Bartels Mikrotechnik, Becton Dickinson, BforCure, BGI, Bi.Flow Systems GmbH, Binx Health, Biocartis, Biomensio, bioMerieux, Bionano Genomics, Bioneer, Bio-Rad, BioSurfit, Biotechne, Boehringer Ingelheim, Bosch, Bruker Cellular Analysis, CapitalBiotech Corporation, Capsum, Cellbox Labs, Cellares, CellFE, Cellix Ltd., Charles River Laboratories, ClexBio, CN Bio, Cytovale, Danaher Corporation, Deepcell, Dermagnostix, DiaSorin Molecular, DNA electronics (DNAe), DNA Nudge, Dolomite Microfluidics, Eden Microfluidics, Element Biosciences, Elveflow, Emulate Bio, ENPLAS, Epicore Biosystems, Epigem, Evonetix, FEMTOprint, FinalSpark, Finnadvance, FLEXOMICS LLC, Fluigent, Fluxergy, Genalyte, GenSpeed Biotech GmbH, Hesperos Inc., Hicomp Microtech, Hochuen Medical, IDEX Health & Science, iLine Microsystems, Illumina, Imec, iMiGiNE, IMT AG, Inflammatix, Inorevia, Integra Biosciences, Invetech, InziGn Pte Ltd., Klearia, Kloe, Kypha, LightDeck, LioniX, LuminUltra Technologies, Lunaphore Technologies, Medimate, Mekonos, MeMed BV, Memo Therapeutics AG, Menarini Silicon Biosystems, Mesa labs, MGI Tech, MiCo BioMed USA, Microcaps AG, Microfluidic ChipShop, Micron Biomedical, Micronit, MicrofluidiX, Micropoint Technologies, microTEC, miDiagnostics, Miltenyi Biotec, Mimetas, Minos Biosciences, Mission Bio, Molbio Diagnostics, MZP tech, Nag Bioscience, NanoCellect, NanoDx, NanoEntek, Nanomix, NanoPass, NanoScribe, Netri, Nicoya, Nortis, Nuclera, Nutcracker Therapeutics, Okomera, Ondavia, Opgen Group, OPKO, Optolane Technologies, Orange Biomed, Osler Diagnostics, Oxford Nanopore Technologies, Pacific Biosciences, Paragraf, Parallel Fluidics, Pattern Bioscience, Perkinelmer, Philips Engineering Solutions, Phillips Medisize, PixCell Medical, Potomac Photonics (Goodfellow), Precision Nanosystems, Qiagen, Qorvo Biotechnologies, Quanterix, QuantuMDx, Quantum-Si, QuidelOrtho, Qurin Diagnostics, Rab-Microfluidics and more....
  • Future Outlook Analysis of emerging opportunities
  • Supply Chain Analysis:
    • Raw materials suppliers
    • Component manufacturers
    • Device integrators
    • End-user markets
    • Distribution channels
  • Market Opportunities

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Size
  • 1.2. Emerging Trends and Technologies
  • 1.3. Market Drivers
    • 1.3.1. Advancements in Point-of-Care Diagnostics
      • 1.3.1.1. Rapid Testing for Infectious Diseases
      • 1.3.1.2. Chronic Disease Management
      • 1.3.1.3. Decentralized Healthcare Trends
    • 1.3.2. Increasing Demand for Personalized Medicine
      • 1.3.2.1. Genomics and Proteomics Applications
      • 1.3.2.2. Targeted Drug Delivery Systems
      • 1.3.2.3. Companion Diagnostics
    • 1.3.3. Growth in Drug Discovery and Life Sciences Research
      • 1.3.3.1. High-Throughput Screening
      • 1.3.3.2. Organ-on-a-Chip Models
      • 1.3.3.3. Single-Cell Analysis
    • 1.3.4. Emerging Applications in Industrial and Environmental Monitoring
      • 1.3.4.1. Water Quality Testing
      • 1.3.4.2. Food Safety Analysis
      • 1.3.4.3. Industrial Process Control
  • 1.4. Market Restraints
    • 1.4.1. High Initial Costs and Complexities in Manufacturing
    • 1.4.2. Standardization and Regulatory Challenges
    • 1.4.3. Limited Awareness and Adoption in Emerging Markets
    • 1.4.4. Scaling Up Production While Maintaining Quality
    • 1.4.5. Competing Technologies and Alternative Solutions
  • 1.5. Market Opportunities
    • 1.5.1. Integration of AI and IoT in Microfluidic Devices
    • 1.5.2. Lab-to-fab
    • 1.5.3. Novel Applications in Organ-on-a-Chip and 3D Cell Culture
    • 1.5.4. Space Research Applications
    • 1.5.5. Synthetic Biology
    • 1.5.6. Advanced Materials Development
    • 1.5.7. Food Safety and Quality
  • 1.6. Competitive Landscape Overview

2. INTRODUCTION

  • 2.1. Types of Microfluidic Technologies
    • 2.1.1. Continuous-flow Microfluidics
    • 2.1.2. Droplet-based Microfluidics
    • 2.1.3. Digital Microfluidics
    • 2.1.4. Paper-based Microfluidics

3. GLOBAL MARKET SIZE AND FORECAST (2025-2035)

  • 3.1. Overall Market Size and Growth Rate
    • 3.1.1. Historical Market Size (2020-2024)
    • 3.1.2. Forecast Market Size (2025-2035)
  • 3.2. Market Segmentation by End-Use Markets
    • 3.2.1. Consumer Market
      • 3.2.1.1. Inkjet Printing
      • 3.2.1.2. Consumer Diagnostics
      • 3.2.1.3. Wearable Devices
    • 3.2.2. Industrial Market
      • 3.2.2.1. Environmental Monitoring
      • 3.2.2.2. Food and Beverage Testing
      • 3.2.2.3. Oil and Gas Analysis
      • 3.2.2.4. Electronic Cooling Solutions
    • 3.2.3. Medical Market
      • 3.2.3.1. In-Vitro Diagnostics
      • 3.2.3.2. Drug Discovery and Development
      • 3.2.3.3. Genomics and Proteomics
      • 3.2.3.4. Point-of-Care Testing
  • 3.3. Regional Market Analysis
    • 3.3.1. North America
    • 3.3.2. Europe
    • 3.3.3. Asia-Pacific
    • 3.3.4. Rest of the World

4. MARKETS AND APPLICATIONS

  • 4.1. Diagnostics
    • 4.1.1. Overview
    • 4.1.2. Emerging Trends
      • 4.1.2.1. Artificial Intelligence Integration
      • 4.1.2.2. Smartphone-Based Systems
      • 4.1.2.3. Paper-Based Microfluidics
      • 4.1.2.4. Digital Microfluidics
      • 4.1.2.5. 3D-Printed Microfluidics
    • 4.1.3. Infectious Diseases
      • 4.1.3.1. Viral Infection Detection
      • 4.1.3.2. Bacterial Infection Management
      • 4.1.3.3. Emerging Pathogen Response
    • 4.1.4. Oncology
      • 4.1.4.1. Circulating Tumor Cell Analysis
      • 4.1.4.2. Molecular Profiling and Monitoring
      • 4.1.4.3. Treatment Response Monitoring
    • 4.1.5. Cardiology
      • 4.1.5.1. Acute Cardiac Event Management
      • 4.1.5.2. Chronic Disease Monitoring
    • 4.1.6. Others
      • 4.1.6.1. Neurological Disorders
        • 4.1.6.1.1. Blood-Brain Barrier Modeling
        • 4.1.6.1.2. Neurodegenerative Disease Diagnostics
      • 4.1.6.2. Endocrine Disorders
        • 4.1.6.2.1. Diabetes Management
        • 4.1.6.2.2. Thyroid Function Testing
      • 4.1.6.3. Autoimmune Disease Diagnostics
        • 4.1.6.3.1. Comprehensive Antibody Profiling
        • 4.1.6.3.2. Inflammatory Response Analysis
      • 4.1.6.4. Genetic Testing Applications
        • 4.1.6.4.1. Prenatal Testing
        • 4.1.6.4.2. Hereditary Disease Screening
      • 4.1.6.5. Rare Disease Diagnostics
  • 4.2. Pharmaceutical and Life Science Research
    • 4.2.1. Drug Screening
    • 4.2.2. Genomics
    • 4.2.3. Proteomics
    • 4.2.4. Cell Analysis
  • 4.3. Inkjet Printing
    • 4.3.1. Consumer Printing
    • 4.3.2. Industrial Printing
    • 4.3.3. 3D Printing
  • 4.4. Environmental and Food Safety Testing
    • 4.4.1. Water Quality Analysis
    • 4.4.2. Food Contaminant Detection
    • 4.4.3. Soil Analysis
  • 4.5. Others (e.g., Cosmetics, Agriculture)
    • 4.5.1. Cosmetics and Personal Care Manufacturing
    • 4.5.2. Automotive Fluids Analysis
    • 4.5.3. Energy Production Monitoring
    • 4.5.4. Materials Manufacturing
    • 4.5.5. Chemical Processing
    • 4.5.6. Agriculture
  • 4.6. Module Types
    • 4.6.1. Microfluidic Chips
    • 4.6.2. Pumps and Valves
    • 4.6.3. Sensors and Detectors
    • 4.6.4. Microfluidic Cartridges
    • 4.6.5. Others
  • 4.7. Materials
    • 4.7.1. Polymer
      • 4.7.1.1. Thermoplastics (PMMA, COC, PS)
      • 4.7.1.2. Thermosets
      • 4.7.1.3. PDMS (Polydimethylsiloxane)
    • 4.7.2. Glass Wafers
    • 4.7.3. Silicon Wafers
    • 4.7.4. Paper and Other Materials
      • 4.7.4.1. Multiplexed Analysis Platforms
      • 4.7.4.2. Integration with IoT for Real-time Monitoring

5. MARKET TRENDS

  • 5.1. Consumer Market Trends
    • 5.1.1. Evolution of Inkjet Printing Technologies
      • 5.1.1.1. Continuous Inkjet (CIJ) vs. Drop-on-Demand (DOD)
      • 5.1.1.2. Advancements in Printhead Technology
      • 5.1.1.3. Eco-friendly Inks and Sustainability Trends
    • 5.1.2. Emerging Consumer Diagnostics and Wellness Devices
      • 5.1.2.1. At-home Testing Kits
      • 5.1.2.2. Wearable Microfluidic Devices
      • 5.1.2.3. Personalized Nutrition and Hydration Monitoring
  • 5.2. Industrial Market Trends
    • 5.2.1. Advancements in Environmental and Food Safety Testing
      • 5.2.1.1. Rapid On-site Detection Systems
      • 5.2.1.2. Multiplexed Analysis Platforms
      • 5.2.1.3. Integration with IoT for Real-time Monitoring
    • 5.2.2. Applications in Oil Testing and Agriculture
      • 5.2.2.1. In-situ Oil Analysis
      • 5.2.2.2. Precision Agriculture and Crop Management
      • 5.2.2.3. Soil Health Monitoring
    • 5.2.3. Electronic Cooling Solutions
      • 5.2.3.1. Microfluidic Cooling for High-Performance Computing
      • 5.2.3.2. Innovations in Data Center Cooling
        • 5.2.3.2.1. Thermal management
      • 5.2.3.3. Challenges and Opportunities in Chip-level Cooling
  • 5.3. Medical Market Trends
    • 5.3.1. Point-of-Care Diagnostics Evolution
      • 5.3.1.1. Smartphone-integrated Diagnostics
      • 5.3.1.2. Multiplexed POC Platforms
      • 5.3.1.3. Emerging Biomarkers and Test Types
    • 5.3.2. Microfluidics in Drug Discovery and Development
      • 5.3.2.1. High-Throughput Screening Platforms
      • 5.3.2.2. Organ-on-a-Chip for Drug Testing
      • 5.3.2.3. Personalized Drug Efficacy Testing
    • 5.3.3. Next-Generation Sequencing Advancements
      • 5.3.3.1. Microfluidic-based Library Preparation
      • 5.3.3.2. Single-cell Sequencing Platforms
      • 5.3.3.3. Long-read Sequencing Technologies
    • 5.3.4. Microphysiological Systems and Organ-on-a-Chip
      • 5.3.4.1. Multi-organ Systems
      • 5.3.4.2. Disease Modelling
      • 5.3.4.3. Personalized Medicine Applications
    • 5.3.5. Cell Analysis and Therapy Applications
      • 5.3.5.1. Circulating Tumor Cell (CTC) Analysis
      • 5.3.5.2. CAR-T Cell Manufacturing
      • 5.3.5.3. Stem Cell Research and Therapy

6. SUPPLY CHAIN ANALYSIS

  • 6.1. Raw Materials and Components Suppliers
  • 6.2. Microfluidic Chip Manufacturers
  • 6.3. Module and Device Integrators
  • 6.4. End-Users

7. TECHNOLOGY TRENDS AND INNOVATIONS

  • 7.1. Development of Biosensors
    • 7.1.1. Photonic Sensors for Cell Therapy
      • 7.1.1.1. Applications in Cell Sorting and Analysis
      • 7.1.1.2. Challenges and Future Prospects
    • 7.1.2. Silicon-Based Biosensors for Point-of-Care Diagnostics
      • 7.1.2.1. CMOS-Integrated Biosensors
      • 7.1.2.2. Label-free Detection Methods
      • 7.1.2.3. Multiplexed Sensing Platforms
  • 7.2. Materials Innovations
    • 7.2.1. Advancements in Polymer Technologies
      • 7.2.1.1. High-Performance Thermoplastics
      • 7.2.1.2. Biodegradable Polymers
      • 7.2.1.3. Surface Modification Techniques
    • 7.2.2. PDMS Alternatives and Hybrid Materials
      • 7.2.2.1. Thermoplastic Elastomers
      • 7.2.2.2. Fluoropolymers
      • 7.2.2.3. Glass-Polymer Hybrids
    • 7.2.3. Glass and Silicon Wafer Innovations
      • 7.2.3.1. Ultra-thin Glass Substrates
      • 7.2.3.2. 3D-Structured Silicon
      • 7.2.3.3. Nanoporous Materials
  • 7.3. Manufacturing Trends
    • 7.3.1. Polymer Manufacturing Advancements
      • 7.3.1.1. Injection Molding Innovations
      • 7.3.1.2. Hot Embossing Techniques
      • 7.3.1.3. 3D Printing of Microfluidic Devices
    • 7.3.2. Silicon and Glass Manufacturing Techniques
      • 7.3.2.1. Deep Reactive Ion Etching (DRIE)
      • 7.3.2.2. Wafer-level Packaging
      • 7.3.2.3. Through-Silicon Vias (TSVs)
    • 7.3.3. Backend Processes and Integration
      • 7.3.3.1. Bonding Technologies
    • 7.3.4. Surface Treatments and Coatings
      • 7.3.4.1. Integration of Electronics and Microfluidics
  • 7.4. Emerging Technologies
    • 7.4.1. AI and Machine Learning Integration
      • 7.4.1.1. Automated Design of Microfluidic Circuits
      • 7.4.1.2. Predictive Maintenance of Microfluidic Systems
      • 7.4.1.3. Data Analysis and Interpretation
    • 7.4.2. 3D Printing in Microfluidics
      • 7.4.2.1. Stereolithography (SLA) for Microfluidics
      • 7.4.2.2. Multi-material 3D Printing
      • 7.4.2.3. Bioprinting of Tissue Constructs
    • 7.4.3. Paper-Based Microfluidics
      • 7.4.3.1. Fabrication Methods
      • 7.4.3.2. Applications in Low-Resource Settings
      • 7.4.3.3. Integration with Smartphones for Readout

8. REGULATORY LANDSCAPE

  • 8.1. Overview of Regulatory Framework for Microfluidic Devices
  • 8.2. FDA Regulations (USA)
    • 8.2.1. Classification of Microfluidic Devices
    • 8.2.2. Premarket Approval (PMA) Process
    • 8.2.3. 510(k) Clearance Process
  • 8.3. CE Marking (Europe)
    • 8.3.1. Medical Device Regulation (MDR)
    • 8.3.2. In Vitro Diagnostic Regulation (IVDR)
    • 8.3.3. Conformity Assessment Procedures
  • 8.4. NMPA Regulations (China)
    • 8.4.1. Registration Process for Medical Devices
    • 8.4.2. Clinical Trial Requirements
    • 8.4.3. Manufacturing and Quality Control Standards

9. FUTURE OUTLOOK AND MARKET OPPORTUNITIES

  • 9.1. Emerging Applications and Use Cases
    • 9.1.1. Microfluidics in Space Research
    • 9.1.2. Microbiome Analysis and Engineering
  • 9.2. Neurotechnology
    • 9.2.1. Neurotechnology and Brain-on-a-Chip
    • 9.2.2. Synthetic Biology and Biofabrication
    • 9.2.3. Advanced Materials Testing and Development
  • 9.3. Potential Impact of Generative AI on Microfluidics
    • 9.3.1. AI-Driven Design Optimization
    • 9.3.2. Predictive Modeling of Fluid Dynamics
    • 9.3.3. Automated Data Analysis and Interpretation
  • 9.4. Microfluidics in Precision Medicine and Personalized Healthcare
    • 9.4.1. Liquid Biopsy and Circulating Biomarkers
    • 9.4.2. Personalized Drug Screening
    • 9.4.3. Microfluidic Devices for Continuous Health Monitoring
  • 9.5. Opportunities in Developing Economies
    • 9.5.1. Point-of-Care Diagnostics for Resource-Limited Settings
    • 9.5.2. Affordable Microfluidic Solutions for Agriculture
    • 9.5.3. Environmental Monitoring in Rapidly Industrializing Regions

10. COMPANY PROFILES (200 company profiles)

11. APPENDICES

  • 11.1. Glossary of Terms
  • 11.2. List of Abbreviations
  • 11.3. Research Methodology

12. REFERENCES

List of Tables

  • Table 1. Global Microfluidics Market Size and Growth Rate, 2025-2035
  • Table 2. Emerging Trends and Technologies
  • Table 3. Key Market Drivers and Challenges in Microfludics
  • Table 4. Point-of-Care Diagnostics Market Growth, 2025-2035
  • Table 5. Rapid Test Antigen Testing Kit
  • Table 6. Decentralized Healthcare Trends
  • Table 7. Genomics and Proteomics Applications
  • Table 8. Organ-on-a-Chip Models
  • Table 9. Emerging Opportunities in Microfluidics Market
  • Table 10. Market Restraints
  • Table 11. Competing Technologies and Alternative Solutions
  • Table 12. Types of Microfluidic Technologies and Their Applications
  • Table 13. Comparison of Microfluidics with Alternative Technologies
  • Table 14. Global Microfluidics Market Size by End-Market, 2020-2024 ($B)
  • Table 15. Global Microfluidics Market Size by End-Market, 2025-2035 ($B)
  • Table 16. Market Share by End-Market Segment, 2025-2035 (%)
  • Table 17. Consumer Market Size by Application, 2025-2035 ($B)
  • Table 18. Industrial Market Size by Application, 2025-2035 ($B)
  • Table 19. Medical Market Size by Application, 2025-2035 ($B)
  • Table 20. Regional Market Size, 2025-2035 ($B)
  • Table 21. Microfluidics Markets and Applications
  • Table 22. Current Implementation Areas
  • Table 23. Diagnostics Market by Disease Area, 2025-2035 ($B)
  • Table 24. Pharmaceutical and Life Science Research Market Trends
  • Table 25. Comparison of Microfluidics Platforms with conventional methods
  • Table 26. Microfluidics application in genomics
  • Table 27. Microfluidic proteomics application
  • Table 28. Types of cell analysis
  • Table 29. Inkjet Printing Market by Type, 2025-2035 ($B)
  • Table 30. Comparison of inkjet printing techniques
  • Table 31. Environmental and Food Safety Testing Market, 2025-2035 ($B)
  • Table 32. Comparison of microfluidics with traditional environmental and food safety testing methods
  • Table 33. Comparion of microfluidics with traditional methods in water quality analysis
  • Table 34. Comparison of microfluidics for food contaminant detection
  • Table 35. Comparison of microfluidics for soil analysis to other conventional methods
  • Table 36. Microfluidics for energy production monitoring compared to other conventional methods
  • Table 37. Microfluidics for monitoring chemical manufacturing processes compared to other methods
  • Table 38. Market Size by Module Type, 2025-2035 ($B)
  • Table 39. Common materials in microfluidic chips
  • Table 40. Pump Technologies in Microfluidics
  • Table 41. Valve Technologies in Microfluidics
  • Table 42. Sensors and detectors in microfluidic systems,
  • Table 43. Market Share by Material Type, 2025 vs 2035
  • Table 44. Properties of Thermoplastics in Microfluidics
  • Table 45. Types of Thermosets in Microfluidics
  • Table 46. Properties of glass wafers
  • Table 47. Paper materials utilized in microfluidics
  • Table 48. Continuous Inkjet (CIJ) vs. Drop-on-Demand (DOD)
  • Table 49. Advancements in Printhead Technology
  • Table 50. Sustainability metrics for Eco-friendly inks
  • Table 51. Types of Wearable Microfluidic Devices
  • Table 52. Rapid On-site Detection Systems
  • Table 53. Multiplexed Analysis Platforms
  • Table 54. IoT Integration for Real-time Monitoring
  • Table 55. Precision Agriculture Applications
  • Table 56. Microfluidic Cooling Applications in Electronics
  • Table 57. Challenges and Opportunities in Chip-level Cooling
  • Table 58. Multiplexed POC Platform Types
  • Table 59. Emerging Biomarkers and Test Types
  • Table 60. Comparison of Microfluidic Platforms for Drug Discovery
  • Table 61. Next-Generation Sequencing Advancements
  • Table 62. Single-cell Sequencing Platforms
  • Table 63. Long-read Sequencing Technologies
  • Table 64. Personalized Medicine Applications in Microphysiological Systems
  • Table 65. Cell Analysis and Therapy Applications in Microfluidics
  • Table 66. Raw Materials and Components Suppliers
  • Table 67. Microfluidic Chip Manufacturers
  • Table 68. Module and Device Integrators
  • Table 69. Microfluidics End User Categories and Applications
  • Table 70. Comparison of Photonic Sensors for Cell Therapy Applications
  • Table 71. Applications in Cell Sorting and Analysis
  • Table 72. CMOS-Integrated Biosensors
  • Table 73. Label-free Detection Methods
  • Table 74. Multiplexed Sensing Platforms
  • Table 75. Advanced Polymer Materials for Microfluidics, Properties and Applications
  • Table 76. High-Performance Thermoplastics
  • Table 77. Biodegradable Polymers
  • Table 78. Surface Modification Techniques
  • Table 79. Polymer Manufacturing Techniques Comparison
  • Table 80. Hot Embossing Techniques
  • Table 81. Silicon and Glass Manufacturing Techniques, Pros and Cons
  • Table 82. Backend Processes and Integration Trends
  • Table 83. Bonding Technologies
  • Table 84. AI and ML Applications in Microfluidics,
  • Table 85. Multi-material 3D Printing for Microfluidics
  • Table 86.Bioprinting in Microfluidics
  • Table 87. Paper-Based Microfluidics Fabrication Methods
  • Table 88. Applications in Low-Resource Settings
  • Table 89. Global Regulatory Framework for Microfluidic Devices
  • Table 90. FDA Classification of Microfluidic Devices
  • Table 91. Microfluidics Applications in Space Research
  • Table 92. Microbiome Applications
  • Table 93. Synthetic Biology and Biofabrication Applications
  • Table 94. Microfluidic Applications in Materials Testing and Development
  • Table 95. Glossary of terms
  • Table 96. List of Abbreviations

List of Figures

  • Figure 1. Microfluidic chip
  • Figure 2. Global Microfluidics Market Size and Growth Rate, 2025-2035
  • Figure 3. Body on Chip
  • Figure 4. Applications of microfluidics in food safety monitoring
  • Figure 5. Microfluidics Market Map
  • Figure 6. A digital microfluidic system with 3D microstructures for single-cell culture
  • Figure 7. Characterization of paper microfluidics
  • Figure 8. Global Microfluidics Market Size by End-Market, 2020-2024 ($B)
  • Figure 9. Global Microfluidics Market Size by End-Market, 2025-2035 ($B)
  • Figure 10. Consumer Market Size by Application, 2025-2035 ($B)
  • Figure 11. Wearable sweat sensor
  • Figure 12. Industrial Market Size by Application, 2025-2035 ($B)
  • Figure 13. Medical Market Size by Application, 2025-2035 ($B)
  • Figure 14. Regional Market Size, 2025-2035 ($B)
  • Figure 15. Diagnostics Market by Disease Area, 2025-2035 ($B)
  • Figure 16. Market Size by Module Type, 2025-2035 ($B)
  • Figure 17. Overview of the Microfluidics Supply Chain
  • Figure 18. Illumina Patterned Flow Cell Technology
  • Figure 19. CELLINK BIO X Bioprinter
  • Figure 20. 10x Genomics Chromium Controller
  • Figure 21. Abbott i-STAT System
  • Figure 22. Agilent 2100 Bioanalyzer
  • Figure 23. Agilis Reader
  • Figure 24. TruArray technology
  • Figure 25. be.wellTM Analyzer
  • Figure 26. Lakhesys - The Benchtop Cell Factory
  • Figure 27. STYX platform
  • Figure 28. BAEBIES FINDER
  • Figure 29. Bartels Mikrotechnik Micropumps
  • Figure 30. Chronos platform
  • Figure 31. IdyllaTM platform
  • Figure 32. Biomensio Smart multianalyte handheld detection
  • Figure 33. ExperionTM Automated Electrophoresis Station
  • Figure 34. spinit-R platform
  • Figure 35. Infinity MTx platform
  • Figure 36. IntelliSep
  • Figure 37. DNA Nudge analytic device
  • Figure 38. AVITITM System
  • Figure 39. Emulate Organ-Chip Instruments
  • Figure 40. EPIGEM lab on a chip
  • Figure 41. Bioprocessor with eight electrodes attached to four arrays each housing a cluster of brain cells
  • Figure 42. Fluxergy Analyzer
  • Figure 43. MiSeq System
  • Figure 44. TriVerityTM Acute Infection and Sepsis Test
  • Figure 45. Klearia's the PANDa (Portable ANalyzer for trace metals Detection)
  • Figure 46. TriPleXTM
  • Figure 47. Fisic Medimate self-test platform
  • Figure 48. DEPArrayTM platform
  • Figure 49. MACSQuant-R Tyto-R system
  • Figure 50. OrganoPlate-R
  • Figure 51. OhmX Analyzer
  • Figure 52. NanoDx Tbit System
  • Figure 53. Claros 1 analyzer
  • Figure 54. GenotizerTM
  • Figure 55. OBM rapid A1c meter
  • Figure 56. Osler HemaTap-R system
  • Figure 57. MinION portable nanopore sequencing device
  • Figure 58. GridION
  • Figure 59. Graphene Field Effect Transistor
  • Figure 60. PixCell HemScreen
  • Figure 61. QuantumX MX879B
  • Figure 62. Quidel Triage -R System
  • Figure 63. Qurin Biosensor
  • Figure 64. Oleum Oracle-R
  • Figure 65. Apollo
  • Figure 66. The LabChip GXII Touch Protein Characterization System
  • Figure 67. GenMark's ePlex system
  • Figure 68. rqmicro COUNT
  • Figure 69. VerePLEXTM Biosystem
  • Figure 70. Atellica-R VTLi Patient-side Immunoassay Analyzer
  • Figure 71. NioTM dPCR
  • Figure 72. Takara Bio's ICELL8 technology
  • Figure 73. Talis One Test System
  • Figure 74. VisionSort - ThinkCyte