"The Global Market for Wearable Electronics and Sensors 2025-2035" provides comprehensive analysis of the rapidly evolving wearable technology industry, covering everything from consumer devices to medical applications and advanced electronic textiles. This extensive report examines key market trends, technological developments, and growth opportunities across the entire wearable electronics ecosystem. The wearables market continues to experience significant growth, driven by innovations in flexible electronics, sensor technologies, and advanced materials. The report provides detailed insights into major segments including smartwatches, fitness trackers, smart clothing, medical devices, and augmented/virtual reality headsets. With the integration of artificial intelligence, improved battery technology, and miniaturization of components, wearable devices are becoming increasingly sophisticated and capable of collecting and analyzing complex biometric data.
Key areas analyzed include:
- Comprehensive coverage of wearable form factors including smart watches, bands, glasses, clothing, patches, rings, hearables, head-mounted displays, jewelry, and smart insoles
- Detailed analysis of sensor technologies including motion, optical, force, strain, chemical, and biosensors
- Manufacturing methods and materials including printed electronics, 3D electronics, flexible substrates, and advanced integration techniques
- Medical and healthcare applications from continuous glucose monitoring to electronic skin patches
- Gaming and entertainment applications focusing on AR/VR/MR devices
- Electronic textiles (e-textiles) and smart apparel developments
- Energy storage and harvesting solutions for wearable devices
The report provides extensive market forecasts from 2025-2035, analyzing volume and revenue projections across different device categories and application segments. It examines key market drivers including:
- Growing demand for continuous health monitoring and preventive healthcare
- Increasing adoption of fitness tracking and sports performance analysis
- Rising interest in augmented and virtual reality applications
- Advancements in flexible electronics and sensor technologies
- Integration of AI and machine learning capabilities
- Development of improved power solutions and energy harvesting
- Expansion of IoT and connected device ecosystems
Key technologies covered include:
- Advanced sensor development and integration
- Flexible and stretchable electronics
- Printed electronics manufacturing
- Novel materials including conductive inks and polymers
- Battery and energy harvesting innovations
- Display technologies including microLED
- Wireless connectivity solutions
The report profiles >900 companies across the wearable technology value chain, from component manufacturers to end-product developers. It provides detailed analysis of market leaders and innovative startups advancing the field through technological breakthroughs and novel applications. Companies profiled include Abbott Diabetes Care, Artinis Medical Systems, Biobeat Technologies, Biosency, Bosch Sensortec, Cerca Magnetics, Cosinuss, Datwyler, Dexcom, DigiLens, Dispelix, Doublepoint, EarSwitch, Emteq Limited, Epicore Biosystems, Equivital, HTC, IDUN Technologies, IQE, Infi-Tex, Jade Bird Display, Know Labs, Kokoon, Lenovo, LetinAR, Liquid Wire, Lumus, Lynx, Mateligent GmbH, MICLEDI, MICROOLED, Mojo Vision, Nanoleq, Nanusens, NeuroFusion, Oorym, Optinvent, OQmented, Orpyx, Ostendo Technologies, PKVitality, PragmatIC, PROPHESEE, RayNeo (TCL), Raynergy Tek, Rhaeos Inc, Sefar, Segotia, Sony, STMicroelectronics, StretchSense, Tacterion, TDK, Teveri, The Metaverse Standards Forum, TriLite Technologies, TruLife Optics, Valencell, Vitality, VitreaLab, VividQ, Wearable Devices Ltd., WHOOP, Wisear, Withings Health Solutions, XSensio, Zimmer and Peacock and more......
The report also examines:
- Manufacturing processes and challenges
- Material developments and innovations
- Component integration techniques
- Power management solutions
- Data processing and analytics
- Regulatory considerations
- Market barriers and opportunities
- Investment trends and funding
The research highlights emerging applications across multiple sectors:
Healthcare and Medical:
- Remote patient monitoring
- Diagnostic devices
- Drug delivery systems
- Rehabilitation technology
- Mental health applications
Consumer and Fitness:
- Activity tracking
- Sports performance analysis
- Sleep monitoring
- Stress management
- Personal safety
Enterprise and Industrial:
- Workplace safety monitoring
- Industrial training
- Remote assistance
- Productivity enhancement
- Process optimization
Gaming and Entertainment:
- Virtual reality gaming
- Augmented reality experiences
- Mixed reality applications
- Interactive entertainment
- Immersive media
The report analyzes key market trends including:
- Shift toward flexible and stretchable form factors
- Integration of advanced sensing capabilities
- Development of smart textiles and e-fabrics
- Improvements in power efficiency and battery life
- Enhanced data processing and AI integration
- Growth in medical and healthcare applications
- Expansion of AR/VR/MR technology
With over 1000 pages of detailed analysis, including hundreds of figures, tables and company profiles, this report provides essential intelligence for:
- Wearable device manufacturers
- Component suppliers
- Material developers
- Electronics companies
- Healthcare providers
- Investment firms
- Research institutions
- Technology strategists
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. The evolution of electronics
- 1.2. The wearables revolution
- 1.3. The wearable tech market in 2024
- 1.4. Wearable market leaders
- 1.5. Continuous monitoring
- 1.6. Market map for wearable electronics and sensors
- 1.7. From rigid to flexible and stretchable
- 1.8. Flexible and stretchable electronics in wearables
- 1.9. Stretchable artificial skin
- 1.10. Role in the metaverse
- 1.11. Wearable electronics in the textiles industry
- 1.12. New conductive materials
- 1.13. Entertainment
- 1.14. Growth in flexible and stretchable electronics market
- 1.14.1. Recent growth in Printed, flexible and stretchable products
- 1.14.2. Future growth
- 1.14.3. Advanced materials as a market driver
- 1.14.4. Growth in remote health monitoring and diagnostics
- 1.15. Innovations at CES 2021-2024
- 1.16. Investment funding and buy-outs 2019-2024
- 1.17. Flexible hybrid electronics (FHE)
- 1.18. Sustainability in flexible electronics
2. INTRODUCTION
- 2.1. Introduction to wearable technology and wearable sensors
- 2.1.1. What is wearable technology?
- 2.1.1.1. Wearable sensing
- 2.1.1.1.1. Types
- 2.1.1.1.2. Market trends in wearable sensors
- 2.1.1.1.3. Markets
- 2.2. Form factors
- 2.2.1. Smart Watches
- 2.2.2. Smart Bands
- 2.2.3. Smart Glasses
- 2.2.4. Smart Clothing
- 2.2.5. Smart Patches
- 2.2.6. Smart Rings
- 2.2.7. Hearables
- 2.2.8. Head-Mounted
- 2.2.9. Smart Insoles
- 2.3. Wearable sensors
- 2.3.1. Motion Sensors
- 2.3.1.1. Overview
- 2.3.1.2. Technology and Components
- 2.3.1.2.1. Inertial Measurement Units (IMUs)
- 2.3.1.2.1.1. MEMs accelerometers
- 2.3.1.2.1.2. MEMS Gyroscopes
- 2.3.1.2.1.3. IMUs in smart-watches
- 2.3.1.2.2. Tunneling magnetoresistance sensors (TMR)
- 2.3.1.3. Applications
- 2.3.2. Optical Sensors
- 2.3.2.1. Overview
- 2.3.2.2. Technology and Components
- 2.3.2.2.1. Photoplethysmography (PPG)
- 2.3.2.2.2. Spectroscopy
- 2.3.2.2.3. Photodetectors
- 2.3.2.3. Applications
- 2.3.2.3.1. Heart Rate Optical Sensors
- 2.3.2.3.2. Pulse Oximetry Optical Sensors
- 2.3.2.3.2.1. Blood oxygen measurement
- 2.3.2.3.2.2. Wellness and Medical Applications
- 2.3.2.3.2.3. Consumer Pulse Oximetry
- 2.3.2.3.2.4. Pediatric Applications
- 2.3.2.3.2.5. Skin Patches
- 2.3.2.3.3. Blood Pressure Optical Sensors
- 2.3.2.3.3.1. Commercialization
- 2.3.2.3.3.2. Oscillometric blood pressure measurement
- 2.3.2.3.3.3. Combination of PPG and ECG
- 2.3.2.3.3.4. Non-invasive Blood Pressure Sensing
- 2.3.2.3.3.5. Blood Pressure Hearables
- 2.3.2.3.4. Non-Invasive Glucose Monitoring Optical Sensors
- 2.3.2.3.4.1. Overview
- 2.3.2.3.4.2. Other Optical Approaches
- 2.3.2.3.5. fNIRS Optical Sensors
- 2.3.2.3.5.1. Overview
- 2.3.2.3.5.2. Brain-Computer Interfaces
- 2.3.3. Force Sensors
- 2.3.3.1. Overview
- 2.3.3.1.1. Piezoresistive force sensing
- 2.3.3.1.2. Thin film pressure sensors
- 2.3.3.2. Technology and Components
- 2.3.3.2.1. Materials
- 2.3.3.2.2. Piezoelectric polymers
- 2.3.3.2.3. Temperature sensing and Remote Patient Monitoring (RPM) integration
- 2.3.3.2.4. Wearable force and pressure sensors
- 2.3.4. Strain Sensors
- 2.3.4.1. Overview
- 2.3.4.2. Technology and Components
- 2.3.4.3. Applications
- 2.3.4.3.1. Healthcare
- 2.3.4.3.2. Wearable Strain Sensors
- 2.3.4.3.3. Temperature Sensors
- 2.3.5. Chemical Sensors
- 2.3.5.1. Overview
- 2.3.5.2. Optical Chemical Sensors
- 2.3.5.3. Technology and Components
- 2.3.5.3.1. Continuous Glucose Monitoring
- 2.3.5.3.2. Commercial CGM systems
- 2.3.5.4. Applications
- 2.3.5.4.1. Sweat-based glucose monitoring
- 2.3.5.4.2. Tear glucose measurement
- 2.3.5.4.3. Salivary glucose monitoring
- 2.3.5.4.4. Breath analysis for glucose monitoring
- 2.3.5.4.5. Urine glucose monitoring
- 2.3.6. Biosensors
- 2.3.6.1. Overview
- 2.3.6.2. Applications
- 2.3.6.2.1. Wearable Alcohol Sensors
- 2.3.6.2.2. Wearable Lactate Sensors
- 2.3.6.2.3. Wearable Hydration Sensors
- 2.3.6.2.4. Smart diaper technology
- 2.3.6.2.5. Ultrasound technology
- 2.3.6.2.6. Microneedle technology for continuous fluid sampling
- 2.3.7. Quantum Sensors
- 2.3.7.1. Magnetometry
- 2.3.7.2. Tunneling magnetoresistance sensors
- 2.3.7.3. Chip-scale atomic clocks
- 2.3.8. Wearable Electrodes
- 2.3.8.1. Overview
- 2.3.8.2. Applications
- 2.3.8.2.1. Skin Patches and E-textiles
- 2.3.8.3. Technology and Components
- 2.3.8.3.1. Electrode Selection
- 2.3.8.3.2. E-textiles
- 2.3.8.3.3. Microneedle electrodes
- 2.3.8.3.4. Electronic Skins
- 2.3.8.4. Applications
- 2.3.8.4.1. Electrocardiogram (ECG) wearable electrodes
- 2.3.8.4.2. Electroencephalography (EEG) wearable electrodes represent
- 2.3.8.4.3. Electromyography (EMG) wearable electrodes
- 2.3.8.4.4. Bioimpedance wearable electrodes
3. MANUFACTURING METHODS
- 3.1. Comparative analysis
- 3.2. Printed electronics
- 3.2.1. Technology description
- 3.2.2. SWOT analysis
- 3.3. 3D electronics
- 3.3.1. Technology description
- 3.3.2. SWOT analysis
- 3.4. Analogue printing
- 3.4.1. Technology description
- 3.4.2. SWOT analysis
- 3.5. Digital printing
- 3.5.1. Technology description
- 3.5.2. SWOT analysis
- 3.6. In-mold electronics (IME)
- 3.6.1. Technology description
- 3.6.2. SWOT analysis
- 3.7. Roll-to-roll (R2R)
- 3.7.1. Technology description
- 3.7.2. SWOT analysis
4. MATERIALS AND COMPONENTS
- 4.1. Component attachment materials
- 4.1.1. Conductive adhesives
- 4.1.2. Biodegradable adhesives
- 4.1.3. Magnets
- 4.1.4. Bio-based solders
- 4.1.5. Bio-derived solders
- 4.1.6. Recycled plastics
- 4.1.7. Nano adhesives
- 4.1.8. Shape memory polymers
- 4.1.9. Photo-reversible polymers
- 4.1.10. Conductive biopolymers
- 4.1.11. Traditional thermal processing methods
- 4.1.12. Low temperature solder
- 4.1.13. Reflow soldering
- 4.1.14. Induction soldering
- 4.1.15. UV curing
- 4.1.16. Near-infrared (NIR) radiation curing
- 4.1.17. Photonic sintering/curing
- 4.1.18. Hybrid integration
- 4.2. Conductive inks
- 4.2.1. Metal-based conductive inks
- 4.2.2. Nanoparticle inks
- 4.2.3. Silver inks
- 4.2.4. Particle-Free conductive ink
- 4.2.5. Copper inks
- 4.2.6. Gold (Au) ink
- 4.2.7. Conductive polymer inks
- 4.2.8. Liquid metals
- 4.2.9. Companies
- 4.3. Printable semiconductors
- 4.3.1. Technology overview
- 4.3.2. Advantages and disadvantages
- 4.3.3. SWOT analysis
- 4.4. Printable sensing materials
- 4.4.1. Overview
- 4.4.2. Types
- 4.4.3. SWOT analysis
- 4.5. Flexible Substrates
- 4.5.1. Flexible plastic substrates
- 4.5.1.1. Types of materials
- 4.5.1.2. Flexible (bio) polyimide PCBs
- 4.5.2. Paper substrates
- 4.5.3. Glass substrates
- 4.5.4. Textile substrates
- 4.6. Flexible ICs
- 4.6.1. Description
- 4.6.2. Flexible metal oxide ICs
- 4.6.3. Comparison of flexible integrated circuit technologies
- 4.6.4. SWOT analysis
- 4.7. Printed PCBs
- 4.7.1. Description
- 4.7.2. High-Speed PCBs
- 4.7.3. Flexible PCBs
- 4.7.4. 3D Printed PCBs
- 4.7.5. Sustainable PCBs
- 4.8. Thin film batteries
- 4.8.1. Technology description
- 4.8.2. SWOT analysis
- 4.9. Energy harvesting
- 4.9.1. Approaches
- 4.9.2. Perovskite photovoltaics
- 4.9.3. Applications
- 4.9.4. SWOT analysis
5. CONSUMER ELECTRONICS WEARABLE TECHNOLOGY
- 5.1. Market drivers and trends
- 5.2. Wearable sensors
- 5.2.1. Types
- 5.2.2. Wearable sensor technologies
- 5.2.3. Opportunities
- 5.2.4. Consumer acceptance
- 5.2.5. Healthcare
- 5.2.6. Trends
- 5.3. Wearable actuators
- 5.3.1. Applications
- 5.3.2. Types
- 5.3.3. Electrical stimulation technologies
- 5.3.4. Regulations
- 5.3.5. Batteries
- 5.3.6. Wireless communication technologies
- 5.4. Recent market developments
- 5.5. Wrist-worn wearables
- 5.5.1. Overview
- 5.5.2. Recent developments and future outlook
- 5.5.3. Wrist-worn sensing technologies
- 5.5.4. Activity tracking
- 5.5.5. Advanced biometric sensing
- 5.5.5.1. Blood oxygen and respiration rate
- 5.5.5.2. Established sensor hardware
- 5.5.5.3. Blood Pressure
- 5.5.5.4. Spectroscopic technologies
- 5.5.5.5. Non-Invasive Glucose Monitoring
- 5.5.5.6. Minimally invasive glucose monitoring
- 5.5.6. Wrist-worn communication technologies
- 5.5.7. Luxury and traditional watch industry
- 5.5.8. Smart-strap technologies
- 5.5.9. Driver monitoring technologies
- 5.5.10. Sports-watches, smart-watches and fitness trackers
- 5.5.10.1. Sensing
- 5.5.10.2. Actuating
- 5.5.10.3. SWOT analysis
- 5.5.11. Health monitoring
- 5.5.12. Energy harvesting for powering smartwatches
- 5.5.13. Main producers and products
- 5.6. Sports and fitness
- 5.6.1. Overview
- 5.6.2. Wearable devices and apparel
- 5.6.3. Skin patches
- 5.6.4. Products
- 5.7. Hearables
- 5.7.1. Hearing assistance technologies
- 5.7.2. Technology advancements
- 5.7.3. Assistive Hearables
- 5.7.3.1. Biometric Monitoring
- 5.7.4. SWOT analysis
- 5.7.5. Health & Fitness Hearables
- 5.7.6. Multimedia Hearables
- 5.7.7. Artificial Intelligence (AI)
- 5.7.8. Biometric Monitoring
- 5.7.8.1. Sensors
- 5.7.8.2. Heart Rate Monitoring in Sports Headphones
- 5.7.8.3. Integration into hearing assistance
- 5.7.8.4. Advanced Sensing Technologies
- 5.7.8.5. Blood pressure hearables
- 5.7.8.6. Sleep monitoring market
- 5.7.9. Companies and products
- 5.8. Sleep trackers and wearable monitors
- 5.8.1. Built in function in smart watches and fitness trackers
- 5.8.2. Smart rings
- 5.8.3. Headbands
- 5.8.4. Sleep monitoring devices
- 5.8.4.1. Companies and products
- 5.9. Pet and animal wearables
- 5.10. Military wearables
- 5.11. Industrial and workplace monitoring
- 5.12. Global market forecasts
- 5.12.1. Volume
- 5.12.2. Revenues
- 5.13. Market challenges
- 5.14. Company profiles (123 company profiles)
6. MEDICAL AND HEALTHCARE WEARABLE TECHNOLOGY
- 6.1. Market drivers
- 6.2. Current state of the art
- 6.2.1. Wearables for Digital Health
- 6.2.2. Wearable medical device products
- 6.2.3. Temperature and respiratory rate monitoring
- 6.3. Wearable and health monitoring and rehabilitation
- 6.3.1. Market overview
- 6.3.2. Companies and products
- 6.4. Electronic skin patches
- 6.4.1. Electrochemical biosensors
- 6.4.2. Printed pH sensors
- 6.4.3. Printed batteries
- 6.4.4. Materials
- 6.4.4.1. Summary of advanced materials
- 6.4.5. Temperature and respiratory rate monitoring
- 6.4.5.1. Market overview
- 6.4.5.2. Companies and products
- 6.4.6. Continuous glucose monitoring (CGM)
- 6.4.7. Minimally-invasive CGM sensors
- 6.4.8. Non-invasive CGM sensors
- 6.4.8.1. Commercial devices
- 6.4.8.2. Companies and products
- 6.4.9. Cardiovascular monitoring
- 6.4.9.1. Market overview
- 6.4.9.2. ECG sensors
- 6.4.9.2.1. Companies and products
- 6.4.9.3. PPG sensors
- 6.4.9.3.1. Companies and products
- 6.4.10. Pregnancy and newborn monitoring
- 6.4.10.1. Market overview
- 6.4.10.2. Companies and products
- 6.4.11. Hydration sensors
- 6.4.11.1. Market overview
- 6.4.11.2. Companies and products
- 6.4.12. Wearable sweat sensors (medical and sports)
- 6.4.12.1. Market overview
- 6.4.12.2. Companies and products
- 6.5. Wearable drug delivery
- 6.5.1. Companies and products
- 6.6. Cosmetics patches
- 6.6.1. Companies and products
- 6.7. Femtech devices
- 6.7.1. Companies and products
- 6.8. Smart footwear for health monitoring
- 6.8.1. Companies and products
- 6.9. Smart contact lenses and smart glasses for visually impaired
- 6.9.1. Companies and products
- 6.10. Smart woundcare
- 6.10.1. Companies and products
- 6.11. Smart diapers
- 6.11.1. Companies and products
- 6.12. Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots
- 6.12.1. Companies and products
- 6.13. Global market forecasts
- 6.13.1. Volume
- 6.13.2. Revenues
- 6.14. Market challenges
- 6.15. Company profiles (331 company profiles)
7. GAMING AND ENTERTAINMENT WEARABLE TECHNOLOGY (VR/AR/MR)
- 7.1. Introduction
- 7.2. Classification of VR, AR, MR, and XR
- 7.2.1. XR controllers and sensing systems
- 7.2.2. XR positional and motion tracking systems
- 7.2.3. Wearable technology for XR
- 7.2.4. Wearable Gesture Sensors for XR
- 7.2.5. Edge Sensing and AI
- 7.2.6. VR Technology
- 7.2.6.1. Overview
- 7.2.6.2. VR Headset Types
- 7.2.6.3. Future outlook for VR technology
- 7.2.6.4. VR Lens Technology
- 7.2.6.5. VR challenges
- 7.2.6.6. Market growth
- 7.2.7. AR Technology
- 7.2.7.1. Overview
- 7.2.7.2. AR and MR distinction
- 7.2.7.3. AR for Assistive Technology
- 7.2.7.4. Consumer AR market
- 7.2.7.5. Optics Technology for AR and VR
- 7.2.7.5.1. Optical Combiners
- 7.2.7.6. AR display technology
- 7.2.7.7. Challenges
- 7.2.8. Metaverse
- 7.2.9. Mixed Reality (MR) smart glasses
- 7.2.10. OLED microdisplays
- 7.2.10.1. MiniLED
- 7.2.10.1.1. High dynamic range miniLED displays
- 7.2.10.1.2. Quantum dot films for miniLED displays
- 7.2.10.2. MicroLED
- 7.2.10.2.1. Integration
- 7.2.10.2.2. Transfer technologies
- 7.2.10.2.3. MicroLED display specifications
- 7.2.10.2.4. Advantages
- 7.2.10.2.5. Transparency
- 7.2.10.2.6. Costs
- 7.2.10.2.7. MicroLED contact lenses
- 7.2.10.2.8. Products
- 7.2.10.2.9. VR and AR MicroLEDs
- 7.3. Global market forecasts
- 7.3.1. Volume
- 7.3.2. Revenues
- 7.4. Company profiles (96 company profiles)
8. ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL
- 8.1. Macro-trends
- 8.2. Market drivers
- 8.3. SWOT analysis
- 8.4. Performance requirements for E-textiles
- 8.5. Growth prospects for electronic textiles
- 8.6. Textiles in the Internet of Things
- 8.7. Types of E-Textile products
- 8.7.1. Embedded e-textiles
- 8.7.2. Laminated e-textiles
- 8.8. Materials and components
- 8.8.1. Integrating electronics for E-Textiles
- 8.8.1.1. Textile-adapted
- 8.8.1.2. Textile-integrated
- 8.8.1.3. Textile-based
- 8.8.2. Manufacturing of E-textiles
- 8.8.2.1. Integration of conductive polymers and inks
- 8.8.2.2. Integration of conductive yarns and conductive filament fibers
- 8.8.2.3. Integration of conductive sheets
- 8.8.3. Flexible and stretchable electronics
- 8.8.4. E-textiles materials and components
- 8.8.4.1. Conductive and stretchable fibers and yarns
- 8.8.4.1.1. Production
- 8.8.4.1.2. Metals
- 8.8.4.1.3. Carbon materials and nanofibers
- 8.8.4.1.3.1. Graphene
- 8.8.4.1.3.2. Carbon nanotubes
- 8.8.4.1.3.3. Nanofibers
- 8.8.4.2. Mxenes
- 8.8.4.3. Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)
- 8.8.4.4. Conductive polymers
- 8.8.4.4.1. PDMS
- 8.8.4.4.2. PEDOT: PSS
- 8.8.4.4.3. Polypyrrole (PPy)
- 8.8.4.4.4. Conductive polymer composites
- 8.8.4.4.5. Ionic conductive polymers
- 8.8.4.5. Conductive inks
- 8.8.4.5.1. Aqueous-Based Ink
- 8.8.4.5.2. Solvent-Based Ink
- 8.8.4.5.3. Oil-Based Ink
- 8.8.4.5.4. Hot-Melt Ink
- 8.8.4.5.5. UV-Curable Ink
- 8.8.4.5.6. Metal-based conductive inks
- 8.8.4.5.6.1. Nanoparticle ink
- 8.8.4.5.6.2. Silver inks
- 8.8.4.5.6.2.1. Silver flake
- 8.8.4.5.6.2.2. Silver nanoparticle ink
- 8.8.4.5.6.2.3. Formulation
- 8.8.4.5.6.2.4. Conductivity
- 8.8.4.5.6.2.5. Particle-Free silver conductive ink
- 8.8.4.5.6.3. Copper inks
- 8.8.4.5.6.3.1. Properties
- 8.8.4.5.6.3.2. Silver-coated copper
- 8.8.4.5.6.4. Gold (Au) ink
- 8.8.4.5.6.4.1. Properties
- 8.8.4.5.7. Carbon-based conductive inks
- 8.8.4.5.7.1. Carbon nanotubes
- 8.8.4.5.7.2. Single-walled carbon nanotubes
- 8.8.4.5.7.3. Graphene
- 8.8.4.5.8. Liquid metals
- 8.8.4.6. Electronic filaments
- 8.8.4.7. Phase change materials
- 8.8.4.7.1. Temperature controlled fabrics
- 8.8.4.8. Shape memory materials
- 8.8.4.9. Metal halide perovskites
- 8.8.4.10. Nanocoatings in smart textiles
- 8.8.4.11. 3D printing
- 8.8.4.11.1. Fused Deposition Modeling (FDM)
- 8.8.4.11.2. Selective Laser Sintering (SLS)
- 8.8.4.11.3. Products
- 8.8.5. E-textiles components
- 8.8.5.1. Sensors and actuators
- 8.8.5.1.1. Physiological sensors
- 8.8.5.1.2. Environmental sensors
- 8.8.5.1.3. Pressure sensors
- 8.8.5.1.3.1. Flexible capacitive sensors
- 8.8.5.1.3.2. Flexible piezoresistive sensors
- 8.8.5.1.3.3. Flexible piezoelectric sensors
- 8.8.5.1.4. Activity sensors
- 8.8.5.1.5. Strain sensors
- 8.8.5.1.5.1. Resistive sensors
- 8.8.5.1.5.2. Capacitive strain sensors
- 8.8.5.1.6. Temperature sensors
- 8.8.5.1.7. Inertial measurement units (IMUs)
- 8.8.5.2. Electrodes
- 8.8.5.3. Connectors
- 8.9. Applications, markets and products
- 8.9.1. Current E-textiles and smart clothing products
- 8.9.2. Temperature monitoring and regulation
- 8.9.2.1. Heated clothing
- 8.9.2.2. Heated gloves
- 8.9.2.3. Heated insoles
- 8.9.2.4. Heated jacket and clothing products
- 8.9.2.5. Materials used in flexible heaters and applications
- 8.9.3. Stretchable E-fabrics
- 8.9.4. Therapeutic products
- 8.9.5. Sport & fitness
- 8.9.6. Smart footwear
- 8.9.6.1. Companies and products
- 8.9.7. Wearable displays
- 8.9.8. Military
- 8.9.9. Textile-based lighting
- 8.9.10. Smart gloves
- 8.9.11. Powering E-textiles
- 8.9.11.1. Advantages and disadvantages of main battery types for E-textiles
- 8.9.11.2. Bio-batteries
- 8.9.11.3. Challenges for battery integration in smart textiles
- 8.9.11.4. Textile supercapacitors
- 8.9.11.5. Energy harvesting
- 8.9.11.5.1. Photovoltaic solar textiles
- 8.9.11.5.2. Energy harvesting nanogenerators
- 8.9.11.5.2.1. TENGs
- 8.9.11.5.2.2. PENGs
- 8.9.11.5.3. Radio frequency (RF) energy harvesting
- 8.9.12. Motion capture for AR/VR
- 8.10. Global market forecasts
- 8.10.1. Volume
- 8.10.2. Revenues
- 8.11. Market challenges
- 8.12. Company profiles (152 company profiles)
9. ENERGY STORAGE AND HARVESTING FOR WEARABLE TECHNOLOGY
- 9.1. Macro-trends
- 9.2. Market drivers
- 9.3. SWOT analysis
- 9.4. Battery Development
- 9.4.1. Enhanced Energy Density and Performance
- 9.4.2. Stretchable Batteries
- 9.4.3. Textile-Based Batteries
- 9.4.4. Printable Batteries
- 9.4.5. Sustainable and Biodegradable Batteries
- 9.4.6. Self-Healing Batteries
- 9.4.7. Solid-State Flexible Batteries
- 9.4.8. Integration with Energy Harvesting
- 9.4.9. Nanostructured Materials
- 9.4.10. Thin-Film Battery Technologies
- 9.5. Applications of printed and flexible electronics
- 9.6. Flexible and stretchable batteries for electronics
- 9.7. Approaches to flexibility
- 9.8. Flexible Battery Technologies
- 9.8.1. Thin-film Lithium-ion Batteries
- 9.8.1.1. Types of Flexible/stretchable LIBs
- 9.8.1.1.1. Flexible planar LiBs
- 9.8.1.1.2. Flexible Fiber LiBs
- 9.8.1.1.3. Flexible micro-LiBs
- 9.8.1.1.4. Stretchable lithium-ion batteries
- 9.8.1.1.5. Origami and kirigami lithium-ion batteries
- 9.8.1.2. Flexible Li/S batteries
- 9.8.1.3. Flexible lithium-manganese dioxide (Li-MnO2) batteries
- 9.8.2. Printed Batteries
- 9.8.2.1. Technical specifications
- 9.8.2.2. Components
- 9.8.2.3. Design
- 9.8.2.4. Key features
- 9.8.2.4.1. Printable current collectors
- 9.8.2.4.2. Printable electrodes
- 9.8.2.4.3. Materials
- 9.8.2.4.4. Applications
- 9.8.2.4.5. Printing techniques
- 9.8.2.4.6. Lithium-ion (LIB) printed batteries
- 9.8.2.4.7. Zinc-based printed batteries
- 9.8.2.4.8. 3D Printed batteries
- 9.8.2.5. 3D Printing techniques for battery manufacturing
- 9.8.2.5.1.1. Materials for 3D printed batteries
- 9.8.3. Thin-Film Solid-state Batteries
- 9.8.3.1. Solid-state electrolytes
- 9.8.3.2. Features and advantages
- 9.8.3.3. Technical specifications
- 9.8.3.4. Microbatteries
- 9.8.3.4.1. Introduction
- 9.8.3.4.2. 3D designs
- 9.8.4. Stretchable Batteries
- 9.8.5. Other Emerging Technologies
- 9.8.5.1. Metal-sulfur batteries
- 9.8.5.2. Flexible zinc-based batteries
- 9.8.5.3. Flexible silver-zinc (Ag-Zn) batteries
- 9.8.5.4. Flexible Zn-Air batteries
- 9.8.5.5. Flexible zinc-vanadium batteries
- 9.8.5.6. Fiber-shaped batteries
- 9.8.5.6.1. Carbon nanotubes
- 9.8.5.6.2. Applications
- 9.8.5.6.3. Challenges
- 9.8.5.7. Transparent batteries
- 9.8.5.8. Degradable batteries
- 9.8.5.9. Fiber-shaped batteries
- 9.8.5.9.1. Carbon nanotubes
- 9.8.5.9.2. Types
- 9.8.5.9.3. Applications
- 9.8.5.9.4. Challenges
- 9.9. Key Components of Flexible Batteries
- 9.9.1. Electrodes
- 9.9.1.1. Cable-type batteries
- 9.9.1.2. Batteries-on-wire
- 9.9.2. Electrolytes
- 9.9.3. Separators
- 9.9.4. Current Collectors
- 9.9.4.1. Carbon Materials for Current Collectors in Flexible Batteries
- 9.9.5. Packaging
- 9.9.5.1. Lithium-Polymer Pouch Cells
- 9.9.5.2. Flexible Pouch Cells
- 9.9.5.3. Encapsulation Materials
- 9.9.6. Other Manufacturing Techniques
- 9.10. Performance Metrics and Characteristics
- 9.10.1. Energy Density
- 9.10.2. Power Density
- 9.10.3. Cycle Life
- 9.10.4. Flexibility and Bendability
- 9.11. Printed supercapacitors
- 9.11.1. Electrode materials
- 9.11.2. Electrolytes
- 9.12. Photovoltaics
- 9.12.1. Conductive pastes
- 9.12.2. Organic photovoltaics (OPV)
- 9.12.3. Perovskite PV
- 9.12.4. Flexible and stretchable photovoltaics
- 9.12.5. Photovoltaic solar textiles
- 9.12.6. Solar tape
- 9.12.7. Origami-like solar cells
- 9.12.8. Spray-on and stick-on perovskite photovoltaics
- 9.12.9. Photovoltaic solar textiles
- 9.13. Transparent and flexible heaters
- 9.13.1. Technology overview
- 9.13.2. Applications
- 9.13.2.1. Automotive Industry
- 9.13.2.1.1. Defrosting and Defogging Systems
- 9.13.2.1.2. Heated Windshields and Mirrors
- 9.13.2.1.3. Touch Panels and Displays
- 9.13.2.2. Aerospace and Aviation
- 9.13.2.2.1. Aircraft Windows and Canopies
- 9.13.2.2.2. Sensor and Camera Housings
- 9.13.2.3. Consumer Electronics
- 9.13.2.3.1. Smartphones and Tablets
- 9.13.2.3.2. Wearable Devices
- 9.13.2.3.3. Smart Home Appliances
- 9.13.2.4. Building and Architecture
- 9.13.2.4.1. Smart Windows
- 9.13.2.4.2. Heated Glass Facades
- 9.13.2.4.3. Greenhouse and Skylight Applications
- 9.13.2.5. Medical and Healthcare
- 9.13.2.5.1. Incubators and Warming Beds
- 9.13.2.5.2. Surgical Microscopes and Endoscopes
- 9.13.2.5.3. Medical Imaging Equipment
- 9.13.2.6. Display Technologies
- 9.13.2.6.1. LCD Displays
- 9.13.2.6.2. OLED Displays
- 9.13.2.6.3. Flexible and Transparent Displays
- 9.13.2.7. Energy Systems
- 9.13.2.7.1. Solar Panels (De-icing and Efficiency Enhancement)
- 9.13.2.7.2. Fuel Cells
- 9.13.2.7.3. Battery Systems
- 9.14. Thermoelectric energy harvesting
- 9.15. Market challenges
- 9.16. Global market forecasts
- 9.16.1. Volume
- 9.16.2. Revenues
- 9.17. Companies (60 company profiles)
10. RESEARCH METHODOLOGY
11. REFERENCES