有机氟化合物(PFAS)·PFAS替代品·PFAS处理的全球市场(2025年~2035年)
市场调查报告书
商品编码
1617246

有机氟化合物(PFAS)·PFAS替代品·PFAS处理的全球市场(2025年~2035年)

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 345 Pages, 122 Tables, 20 Figures | 订单完成后即时交付

价格

如今,PFAS 材料仍然具有重要意义,其应用范围从防水涂料到半导体、纺织、食品包装、电子和汽车等多个行业关键技术的高性能材料。市场动态受到区域监管框架的显着影响,尤其是在欧洲和北美,严格的监管正在加速传统 PFAS 的转型。半导体产业是一个重要的用例,其中 PFAS 对于先进的製造流程仍然至关重要,但正在努力开发替代品。同样,汽车和电子产业在积极寻求替代品的同时,在某些应用中继续依赖 PFAS。

PFAS 替代品市场正在快速成长,多个领域涌现出创新解决方案。其中包括硅基材料、碳氢化合物技术、生物基替代品和新型聚合物系统。在消费者意识和监管要求的推动下,纺织和食品包装行业正在引领不含 PFAS 的替代品的转变。然而,技术性能差距和成本考量仍然是许多应用面临的重大课题。 PFAS 处理和修復技术是一个不断成长的细分市场,其驱动力是解决环境污染的问题。目前的技术包括高级氧化製程、薄膜过滤、吸附系统和新型破坏处理技术。尤其是水处理产业对 PFAS 去除技术的投资非常大。

预计到 2035 年市场将发生重大变化。预计传统 PFAS 在非必要应用中的使用将大幅下降,而替代品市场预计将呈现强劲成长。在半导体和医疗设备等尚无替代品的关键产业中,某些 PFAS 的用途可以保留,但要加强控制和遏制措施。

由于更严格的环境法规和日益增加的补救要求,处理技术市场预计将大幅扩张。预计处理方法(特别是破坏技术和生物友善方法)的技术创新将会加速,从而产生更具成本效益和效率的解决方案。产业面临的主要课题包括开发在关键应用中能够匹配 PFAS 性能的替代品、管理转换成本以及确保有效的处理方案。市场前景因地区和应用而异,已开发市场引领替代转变,而新兴市场可能会继续在某些应用中使用 PFAS。在这个不断发展的市场中取得成功将取决于技术创新、遵守法规的能力以及平衡性能要求和环境考虑的能力。能够有效应对这些课题并开发永续解决方案的公司很可能在替代和加工技术方面抓住巨大的市场机会。

产业的未来将受到持续的监管变革、技术进步和对永续解决方案的关注的影响,从而到 2035 年实现市场格局转变,特点是减少 PFAS 的使用、广泛采用替代品和拥有先进的加工能力。

本报告提供全球有机氟化合物(PFAS)·PFAS替代品·PFAS处理市场相关调查分析,市场趋势,法规的影响,产业形成的技术开发相关策略性的知识和见识。

目录

第1章 摘要整理

  • PFAS的简介
  • PFAS定义和概要
  • PFAS的类型
  • PFAS的特性与用途
  • 环境和健康的担忧
  • PFAS替代品
  • 分析技术
  • 製造/处理/进口/出口
  • 贮存/废弃/处理/净化
  • 水质管理
  • 替代技术和供应链

第2章 全球法规形势

  • PFAS法规的扩大的影响
  • 国际协定
  • 欧洲联盟的法规
  • 美国的法规
  • 亚洲的法规
  • 全球法规的趋势与预测

第3章 特定产业的PFAS的使用

  • 半导体
  • 纺织品·服饰
  • 食品包装
  • 油漆和涂料
  • 离子交换薄膜
  • 除去能源(燃料电池)
  • 面向5G低损失材料
  • 化妆品
  • 消防泡
  • 汽车
  • 电子
  • 医疗设备
  • 绿色氢

第4章 PFAS替代品

  • PFAS自由离型剂
  • 非氟系界面活性剂,分散剂
  • PFAS自由防水、防油材料
  • 氟自由鼓槌液表面
  • PFAS自由无色透明聚酰亚胺

第5章 PFAS的分解和消除

  • 目前分解并移除 PFAS 的方法
  • 对生物和善的方法
  • 企业

第6章 PFAS处理

  • 简介
  • PFAS的环境污染的途径
  • 规则
  • PFAS水处理
  • PFAS固态物处理
  • 企业

第7章 市场分析与未来预测

  • 当前市场规模与细分
  • 监理对市场动态的影响
  • 新趋势与机遇
  • PFAS 替代品面临的课题与障碍
  • 未来市场预测

第8章 企业简介(企业49公司的简介)

第9章 调查手法

第10章 参考文献

Currently, PFAS materials remain crucial in various industries including semiconductors, textiles, food packaging, electronics, and automotive sectors, with applications ranging from water-repellent coatings to high-performance materials for critical technologies. Market dynamics are heavily influenced by regional regulatory frameworks, particularly in Europe and North America, where stringent regulations are accelerating the transition away from traditional PFAS. The semiconductor industry represents a critical use case, where PFAS remains essential for advanced manufacturing processes, though efforts are underway to develop alternatives. Similarly, the automotive and electronics sectors continue to rely on PFAS for specific applications while actively pursuing substitutes.

The PFAS alternatives market is experiencing rapid growth, with innovative solutions emerging across multiple sectors. These include silicon-based materials, hydrocarbon technologies, bio-based alternatives, and novel polymer systems. The textiles and food packaging industries are leading the transition to PFAS-free alternatives, driven by consumer awareness and regulatory requirements. However, technical performance gaps and cost considerations remain significant challenges in many applications. PFAS treatment and remediation technologies represent a growing market segment, driven by the need to address environmental contamination. Current technologies include advanced oxidation processes, membrane filtration, adsorption systems, and emerging destruction technologies. The water treatment sector, in particular, is seeing significant investment in PFAS removal technologies.

Looking toward 2035, the market is expected to undergo substantial changes. Traditional PFAS usage is projected to decline significantly in non-essential applications, while the alternatives market is forecast to experience robust growth. Critical industries like semiconductors and medical devices may retain specific PFAS applications where alternatives are not yet viable, but with enhanced controls and containment measures.

The treatment technologies market is expected to expand considerably, driven by stricter environmental regulations and growing remediation requirements. Innovation in treatment methods, particularly in destruction technologies and bio-friendly approaches, is likely to accelerate, leading to more cost-effective and efficient solutions. Key challenges for the industry include developing alternatives that match PFAS performance in critical applications, managing transition costs, and ensuring effective treatment solutions. The market outlook varies significantly by region and application, with developed markets leading the transition to alternatives while emerging markets may continue PFAS use in certain applications. Success in this evolving market will depend on technological innovation, regulatory compliance capabilities, and the ability to balance performance requirements with environmental considerations. Companies that can effectively navigate these challenges while developing sustainable solutions are likely to capture significant market opportunities in both alternatives and treatment technologies.

The industry's future will be shaped by continued regulatory evolution, technological advancement, and growing emphasis on sustainable solutions, leading to a transformed market landscape by 2035 characterized by reduced PFAS usage, widespread adoption of alternatives, and advanced treatment capabilities.

"The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035" provides an in-depth analysis of the global PFAS sector, including detailed examination of emerging PFAS alternatives and treatment technologies. The study offers strategic insights into market trends, regulatory impacts, and technological developments shaping the industry through 2035.

The report covers critical market segments including:

  • Traditional PFAS materials and applications
  • PFAS alternatives across multiple industries
  • PFAS treatment and remediation technologies
  • Industry-specific usage and transition strategies
  • Regulatory compliance and future outlook

Key industry verticals analyzed include:

  • Semiconductors and electronics
  • Textiles and clothing
  • Food packaging
  • Paints and coatings
  • Ion exchange membranes
  • Energy storage and conversion
  • Low-loss materials for 5G
  • Automotive and transportation
  • Medical devices
  • Firefighting foams
  • Cosmetics and personal care

The study provides detailed analysis of PFAS alternatives and substitutes, including:

  • Non-fluorinated surfactants
  • Bio-based materials
  • Silicon-based alternatives
  • Hydrocarbon technologies
  • Novel polymer systems
  • Green chemistry solutions
  • Emerging sustainable materials

Comprehensive coverage of PFAS treatment technologies encompasses:

  • Water treatment methods
  • Soil remediation
  • Destruction technologies
  • Bio-friendly approaches
  • Advanced oxidation processes
  • Membrane filtration
  • Adsorption technologies

The report examines key market drivers including:

  • Increasing regulatory pressure
  • Growing environmental concerns
  • Consumer awareness
  • Industry sustainability initiatives
  • Technological advancement
  • Cost considerations
  • Performance requirements

Market challenges addressed include:

  • Technical performance gaps
  • Implementation costs
  • Regulatory compliance
  • Supply chain transitions
  • Industry-specific requirements
  • Environmental impacts
  • Treatment effectiveness

The study provides detailed market data and forecasts:

  • Market size and growth projections
  • Regional market analysis
  • Industry segment breakdown
  • Technology adoption rates
  • Investment trends
  • Cost comparisons
  • Market opportunities

Regulatory analysis covers:

  • Global regulatory landscape
  • Regional compliance requirements
  • Industry-specific regulations
  • Future regulatory trends
  • Implementation timelines
  • Enforcement mechanisms
  • Policy impacts

The report includes over 500 company profiles and competitive analysis covering:

  • PFAS manufacturers
  • Alternative material developers
  • Treatment technology providers
  • Industry end-users
  • Research organizations
  • Technology start-ups

Companies profiled in-depth include include: Allonia, Aquagga, Cambiotics, CoreWater Technologies, Greenitio, Impermea Materials, InEnTec, Ionomr Innovations, Kemira, Lummus Technology, NovoMOF, Oxyle, Perma-Fix Environmental Services, Inc., Puraffinity, Revive Environmental, Veolia, Xyle and many more...

Technical assessment includes:

  • Material properties and performance
  • Application requirements
  • Processing technologies
  • Testing and validation
  • Environmental impact
  • Cost-effectiveness
  • Implementation challenges

Special focus areas include:

  • Green chemistry innovations
  • Circular economy approaches
  • Digital technologies
  • Sustainable alternatives
  • Treatment effectiveness
  • Cost optimization
  • Performance validation

Strategic insights provided:

  • Market entry strategies
  • Technology selection
  • Risk assessment
  • Investment planning
  • Regulatory compliance
  • Supply chain optimization
  • Future scenarios

This essential intelligence resource provides decision-makers with comprehensive data and analysis to navigate the complex PFAS landscape and capitalize on emerging opportunities in alternatives and treatment technologies. The report helps stakeholders understand market dynamics, assess competitive threats, and develop effective strategies for PFAS transition and compliance. The analysis is based on extensive primary research including:

  • Industry interviews
  • Technology assessment
  • Patent analysis
  • Regulatory review
  • Market surveys
  • Performance testing
  • Cost analysis

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to PFAS
  • 1.2. Definition and Overview of PFAS
    • 1.2.1. Chemical Structure and Properties
    • 1.2.2. Historical Development and Use
  • 1.3. Types of PFAS
    • 1.3.1. Non-polymeric PFAS
      • 1.3.1.1. Long-Chain PFAS
      • 1.3.1.2. Short-Chain PFAS
      • 1.3.1.3. Other non-polymeric PFAS
    • 1.3.2. Polymeric PFAS
      • 1.3.2.1. Fluoropolymers (FPs)
      • 1.3.2.2. Side-chain fluorinated polymers:
      • 1.3.2.3. Perfluoropolyethers
  • 1.4. Properties and Applications of PFAS
    • 1.4.1. Water and Oil Repellency
    • 1.4.2. Thermal and Chemical Stability
    • 1.4.3. Surfactant Properties
    • 1.4.4. Low Friction
    • 1.4.5. Electrical Insulation
    • 1.4.6. Film-Forming Abilities
    • 1.4.7. Atmospheric Stability
  • 1.5. Environmental and Health Concerns
    • 1.5.1. Persistence in the Environment
    • 1.5.2. Bioaccumulation
    • 1.5.3. Toxicity and Health Effects
    • 1.5.4. Environmental Contamination
  • 1.6. PFAS Alternatives
  • 1.7. Analytical techniques
  • 1.8. Manufacturing/handling/import/export
  • 1.9. Storage/disposal/treatment/purification
  • 1.10. Water quality management
  • 1.11. Alternative technologies and supply chains

2. GLOBAL REGULATORY LANDSCAPE

  • 2.1. Impact of growing PFAS regulation
  • 2.2. International Agreements
  • 2.3. European Union Regulations
  • 2.4. United States Regulations
    • 2.4.1. Federal regulations
    • 2.4.2. State-Level Regulations
  • 2.5. Asian Regulations
    • 2.5.1. Japan
      • 2.5.1.1. Chemical Substances Control Law (CSCL)
      • 2.5.1.2. Water Quality Standards
    • 2.5.2. China
      • 2.5.2.1. List of New Contaminants Under Priority Control
      • 2.5.2.2. Catalog of Toxic Chemicals Under Severe Restrictions
      • 2.5.2.3. New Pollutants Control Action Plan
    • 2.5.3. Taiwan
      • 2.5.3.1. Toxic and Chemical Substances of Concern Act
    • 2.5.4. Australia and New Zealand
    • 2.5.5. Canada
    • 2.5.6. South Korea
  • 2.6. Global Regulatory Trends and Outlook

3. INDUSTRY-SPECIFIC PFAS USAGE

  • 3.1. Semiconductors
    • 3.1.1. Importance of PFAS
    • 3.1.2. Front-end processes
      • 3.1.2.1. Lithography
      • 3.1.2.2. Wet etching solutions
      • 3.1.2.3. Chiller coolants for dry etchers
      • 3.1.2.4. Piping and valves
    • 3.1.3. Back-end processes
      • 3.1.3.1. Interconnects and Packaging Materials
      • 3.1.3.2. Molding materials
      • 3.1.3.3. Die attach materials
      • 3.1.3.4. Interlayer film for package substrates
      • 3.1.3.5. Thermal management
    • 3.1.4. Product life cycle and impact of PFAS
      • 3.1.4.1. Manufacturing Stage (Raw Materials)
      • 3.1.4.2. Usage Stage (Semiconductor Factory)
      • 3.1.4.3. Disposal Stage
    • 3.1.5. Environmental and Human Health Impacts
    • 3.1.6. Regulatory Trends Related to Semiconductors
    • 3.1.7. Exemptions
    • 3.1.8. Future Regulatory Trends
    • 3.1.9. Alternatives to PFAS
      • 3.1.9.1. Alkyl Polyglucoside and Polyoxyethylene Surfactants
      • 3.1.9.2. Non-PFAS Etching Solutions
      • 3.1.9.3. PTFE-Free Sliding Materials
      • 3.1.9.4. Metal oxide-based materials
      • 3.1.9.5. Fluoropolymer Alternatives
      • 3.1.9.6. Silicone-based Materials
      • 3.1.9.7. Hydrocarbon-based Surfactants
      • 3.1.9.8. Carbon Nanotubes and Graphene
      • 3.1.9.9. Engineered Polymers
      • 3.1.9.10. Supercritical CO2 Technology
      • 3.1.9.11. Plasma Technologies
      • 3.1.9.12. Sol-Gel Materials
      • 3.1.9.13. Biodegradable Polymers
  • 3.2. Textiles and Clothing
    • 3.2.1. Overview
    • 3.2.2. PFAS in Water-Repellent Materials
    • 3.2.3. Stain-Resistant Treatments
    • 3.2.4. Regulatory Impact on Water-Repellent Clothing
    • 3.2.5. Industry Initiatives and Commitments
    • 3.2.6. Alternatives to PFAS
      • 3.2.6.1. Enhanced surface treatments
      • 3.2.6.2. Non-fluorinated treatments
      • 3.2.6.3. Biomimetic approaches
      • 3.2.6.4. Nano-structured surfaces
      • 3.2.6.5. Wax-based additives
      • 3.2.6.6. Plasma treatments
      • 3.2.6.7. Sol-gel coatings
      • 3.2.6.8. Superhydrophobic coatings
      • 3.2.6.9. Biodegradable Polymer Coatings
      • 3.2.6.10. Graphene-based Coatings
      • 3.2.6.11. Enzyme-based Treatments
      • 3.2.6.12. Companies
  • 3.3. Food Packaging
    • 3.3.1. Sustainable packaging
      • 3.3.1.1. PFAS in Grease-Resistant Packaging
      • 3.3.1.2. Other applications
      • 3.3.1.3. Regulatory Trends in Food Contact Materials
    • 3.3.2. Alternatives to PFAS
      • 3.3.2.1. Biobased materials
        • 3.3.2.1.1. Polylactic Acid (PLA)
        • 3.3.2.1.2. Polyhydroxyalkanoates (PHAs)
        • 3.3.2.1.3. Cellulose-based materials
          • 3.3.2.1.3.1. Nano-fibrillated cellulose (NFC)
          • 3.3.2.1.3.2. Bacterial Nanocellulose (BNC)
        • 3.3.2.1.4. Silicon-based Alternatives
        • 3.3.2.1.5. Natural Waxes and Resins
        • 3.3.2.1.6. Engineered Paper and Board
        • 3.3.2.1.7. Nanocomposites
        • 3.3.2.1.8. Plasma Treatments
        • 3.3.2.1.9. Biodegradable Polymer Blends
        • 3.3.2.1.10. Chemically Modified Natural Polymers
        • 3.3.2.1.11. Molded Fiber
      • 3.3.2.2. PFAS-free coatings for food packaging
        • 3.3.2.2.1. Silicone-based Coatings:
        • 3.3.2.2.2. Bio-based Barrier Coatings
        • 3.3.2.2.3. Nanocellulose Coatings
        • 3.3.2.2.4. Superhydrophobic and Omniphobic Coatings
        • 3.3.2.2.5. Clay-based Nanocomposite Coatings
        • 3.3.2.2.6. Coated Papers
      • 3.3.2.3. Companies
  • 3.4. Paints and Coatings
    • 3.4.1. Overview
    • 3.4.2. Applications
    • 3.4.3. Alternatives to PFAS
      • 3.4.3.1. Silicon-Based Alternatives:
      • 3.4.3.2. Hydrocarbon-Based Alternatives:
      • 3.4.3.3. Nanomaterials
      • 3.4.3.4. Plasma-Based Surface Treatments
      • 3.4.3.5. Inorganic Alternatives
      • 3.4.3.6. Bio-based Polymers:
      • 3.4.3.7. Dendritic Polymers
      • 3.4.3.8. Zwitterionic Polymers
      • 3.4.3.9. Graphene-based Coatings
      • 3.4.3.10. Hybrid Organic-Inorganic Coatings
      • 3.4.3.11. Companies
  • 3.5. Ion Exchange membranes
    • 3.5.1. Overview
      • 3.5.1.1. PFAS in Ion Exchange Membranes
    • 3.5.2. Proton Exchange Membranes
      • 3.5.2.1. Overview
      • 3.5.2.2. Proton Exchange Membrane Electrolyzers (PEMELs)
      • 3.5.2.3. Membrane Degradation
      • 3.5.2.4. Nafion
      • 3.5.2.5. Membrane electrode assembly (MEA)
    • 3.5.3. Manufacturing PFSA Membranes
    • 3.5.4. Enhancing PFSA Membranes
    • 3.5.5. Commercial PFSA membranes
    • 3.5.6. Catalyst Coated Membranes
      • 3.5.6.1. Alternatives to PFAS
    • 3.5.7. Membranes in Redox Flow Batteries
      • 3.5.7.1. Alternative Materials for RFB Membranes
    • 3.5.8. Alternatives to PFAS
      • 3.5.8.1. Alternative Polymer Materials
      • 3.5.8.2. Anion Exchange Membrane Technology (AEM) fuel cells
      • 3.5.8.3. Nanocellulose
      • 3.5.8.4. Boron-containing membranes
      • 3.5.8.5. Hydrocarbon-based membranes
      • 3.5.8.6. Metal-Organic Frameworks (MOFs)
        • 3.5.8.6.1. MOF Composite Membranes
      • 3.5.8.7. Graphene
      • 3.5.8.8. Companies
  • 3.6. Energy (excluding fuel cells)
    • 3.6.1. Overview
    • 3.6.2. Solar Panels
    • 3.6.3. Wind Turbines
      • 3.6.3.1. Blade Coatings
      • 3.6.3.2. Lubricants and Greases
      • 3.6.3.3. Electrical and Electronic Components
      • 3.6.3.4. Seals and Gaskets
    • 3.6.4. Lithium-Ion Batteries
      • 3.6.4.1. Electrode Binders
      • 3.6.4.2. Electrolyte Additives
      • 3.6.4.3. Separator Coatings
      • 3.6.4.4. Current Collector Coatings
      • 3.6.4.5. Gaskets and Seals
      • 3.6.4.6. Fluorinated Solvents in Electrode Manufacturing
      • 3.6.4.7. Surface Treatments
    • 3.6.5. Alternatives to PFAS
      • 3.6.5.1. Solar
        • 3.6.5.1.1. Ethylene Vinyl Acetate (EVA) Encapsulants
        • 3.6.5.1.2. Polyolefin Encapsulants
        • 3.6.5.1.3. Glass-Glass Module Design
        • 3.6.5.1.4. Bio-based Backsheets
      • 3.6.5.2. Wind Turbines
        • 3.6.5.2.1. Silicone-Based Coatings
        • 3.6.5.2.2. Nanocoatings
        • 3.6.5.2.3. Thermal De-icing Systems
        • 3.6.5.2.4. Polyurethane-Based Coatings
      • 3.6.5.3. Lithium-Ion Batteries
        • 3.6.5.3.1. Water-Soluble Binders
        • 3.6.5.3.2. Polyacrylic Acid (PAA) Based Binders
        • 3.6.5.3.3. Alginate-Based Binders
        • 3.6.5.3.4. Ionic Liquid Electrolytes
      • 3.6.5.4. Companies
  • 3.7. Low-loss materials for 5G
    • 3.7.1. Overview
      • 3.7.1.1. Organic PCB materials for 5G
    • 3.7.2. PTFE in 5G
      • 3.7.2.1. Properties
      • 3.7.2.2. PTFE-Based Laminates
      • 3.7.2.3. Regulations
      • 3.7.2.4. Commercial low-loss
    • 3.7.3. Alternatives to PFAS
      • 3.7.3.1. Liquid crystal polymers (LCP)
      • 3.7.3.2. Poly(p-phenylene ether) (PPE)
      • 3.7.3.3. Poly(p-phenylene oxide) (PPO)
      • 3.7.3.4. Hydrocarbon-based laminates
      • 3.7.3.5. Low Temperature Co-fired Ceramics (LTCC)
      • 3.7.3.6. Glass Substrates
  • 3.8. Cosmetics
    • 3.8.1. Overview
    • 3.8.2. Use in cosmetics
    • 3.8.3. Alternatives to PFAS
      • 3.8.3.1. Silicone-based Polymers
      • 3.8.3.2. Plant-based Waxes and Oils
      • 3.8.3.3. Naturally Derived Polymers
      • 3.8.3.4. Silica-based Materials
      • 3.8.3.5. Companies Developing PFAS Alternatives in Cosmetics
  • 3.9. Firefighting Foam
    • 3.9.1. Overview
    • 3.9.2. Aqueous Film-Forming Foam (AFFF)
    • 3.9.3. Environmental Contamination from AFFF Use
    • 3.9.4. Regulatory Pressures and Phase-Out Initiatives
    • 3.9.5. Alternatives to PFAS
      • 3.9.5.1. Fluorine-Free Foams (F3)
      • 3.9.5.2. Siloxane-Based Foams
      • 3.9.5.3. Protein-Based Foams
      • 3.9.5.4. Synthetic Detergent Foams (Syndet)
      • 3.9.5.5. Compressed Air Foam Systems (CAFS)
  • 3.10. Automotive
    • 3.10.1. Overview
    • 3.10.2. PFAS in Lubricants and Hydraulic Fluids
    • 3.10.3. Use in Fuel Systems and Engine Components
    • 3.10.4. Electric Vehicle
      • 3.10.4.1. PFAS in Electric Vehicles
      • 3.10.4.2. High-Voltage Cables
      • 3.10.4.3. Refrigerants
        • 3.10.4.3.1. Coolant Fluids in EVs
        • 3.10.4.3.2. Refrigerants for EVs
        • 3.10.4.3.3. Regulations
        • 3.10.4.3.4. PFAS-free Refrigerants
      • 3.10.4.4. Immersion Cooling for Li-ion Batteries
        • 3.10.4.4.1. Overview
        • 3.10.4.4.2. Single-phase Cooling
        • 3.10.4.4.3. Two-phase Cooling
        • 3.10.4.4.4. Companies
        • 3.10.4.4.5. PFAS-based Coolants in Immersion Cooling for EVs
    • 3.10.5. Alternatives to PFAS
      • 3.10.5.1. Lubricants and Greases
      • 3.10.5.2. Fuel System Components
      • 3.10.5.3. Surface Treatments and Coatings
      • 3.10.5.4. Gaskets and Seals
      • 3.10.5.5. Hydraulic Fluids
      • 3.10.5.6. Electrical and Electronic Components
      • 3.10.5.7. Paint and Coatings
      • 3.10.5.8. Windshield and Glass Treatments
  • 3.11. Electronics
    • 3.11.1. Overview
    • 3.11.2. PFAS in Printed Circuit Boards
    • 3.11.3. Cable and Wire Insulation
    • 3.11.4. Regulatory Challenges for Electronics Manufacturers
    • 3.11.5. Alternatives to PFAS
      • 3.11.5.1. Wires and Cables
      • 3.11.5.2. Coating
      • 3.11.5.3. Electronic Components
      • 3.11.5.4. Sealing and Lubricants
      • 3.11.5.5. Cleaning
      • 3.11.5.6. Companies
  • 3.12. Medical Devices
    • 3.12.1. Overview
    • 3.12.2. PFAS in Implantable Devices
    • 3.12.3. Diagnostic Equipment Applications
    • 3.12.4. Balancing Safety and Performance in Regulations
    • 3.12.5. Alternatives to PFAS
  • 3.13. Green hydrogen
    • 3.13.1. Electrolyzers
    • 3.13.2. Alternatives to PFAS
    • 3.13.3. Economic implications

4. PFAS ALTERNATIVES

  • 4.1. PFAS-Free Release Agents
    • 4.1.1. Silicone-Based Alternatives
    • 4.1.2. Hydrocarbon-Based Solutions
    • 4.1.3. Performance Comparisons
  • 4.2. Non-Fluorinated Surfactants and Dispersants
    • 4.2.1. Bio-Based Surfactants
    • 4.2.2. Silicon-Based Surfactants
    • 4.2.3. Hydrocarbon-Based Surfactants
  • 4.3. PFAS-Free Water and Oil-Repellent Materials
    • 4.3.1. Dendrimers and Hyperbranched Polymers
    • 4.3.2. PFA-Free Durable Water Repellent (DWR) Coatings
    • 4.3.3. Silicone-Based Repellents
    • 4.3.4. Nano-Structured Surfaces
  • 4.4. Fluorine-Free Liquid-Repellent Surfaces
    • 4.4.1. Superhydrophobic Coatings
    • 4.4.2. Omniphobic Surfaces
    • 4.4.3. Slippery Liquid-Infused Porous Surfaces (SLIPS)
  • 4.5. PFAS-Free Colorless Transparent Polyimide
    • 4.5.1. Novel Polymer Structures
    • 4.5.2. Applications in Flexible Electronics

5. PFAS DEGRADATION AND ELIMINATION

  • 5.1. Current methods for PFAS degradation and elimination
  • 5.2. Bio-friendly methods
    • 5.2.1. Phytoremediation
    • 5.2.2. Microbial Degradation
    • 5.2.3. Enzyme-Based Degradation
    • 5.2.4. Mycoremediation
    • 5.2.5. Biochar Adsorption
    • 5.2.6. Green Oxidation Methods
    • 5.2.7. Bio-based Adsorbents
    • 5.2.8. Algae-Based Systems
  • 5.3. Companies

6. PFAS TREATMENT

  • 6.1. Introduction
  • 6.2. Pathways for PFAS environmental contamination
  • 6.3. Regulations
    • 6.3.1. USA
    • 6.3.2. EU
    • 6.3.3. Rest of the World
  • 6.4. PFAS water treatment
    • 6.4.1. Introduction
    • 6.4.2. Applications
      • 6.4.2.1. Drinking water
      • 6.4.2.2. Aqueous film forming foam (AFFF)
      • 6.4.2.3. Landfill leachate
      • 6.4.2.4. Municipal wastewater treatment
      • 6.4.2.5. Industrial process and wastewater
      • 6.4.2.6. Sites with heavy PFAS contamination
      • 6.4.2.7. Point-of-use (POU) and point-of-entry (POE) filters and systems
    • 6.4.3. PFAS treatment approaches
    • 6.4.4. Traditional removal technologies
      • 6.4.4.1. Adsorption: granular activated carbon (GAC)
        • 6.4.4.1.1. Sources
        • 6.4.4.1.2. Short-chain PFAS compounds
        • 6.4.4.1.3. Reactivation
        • 6.4.4.1.4. PAC systems
      • 6.4.4.2. Adsorption: ion exchange resins (IER)
        • 6.4.4.2.1. Pre-treatment
        • 6.4.4.2.2. Resins
      • 6.4.4.3. Membrane filtration-reverse osmosis and nanofiltration
    • 6.4.5. Emerging removal technologies
      • 6.4.5.1. Foam fractionation and ozofractionation
        • 6.4.5.1.1. Polymeric sorbents
        • 6.4.5.1.2. Mineral-based sorbents
        • 6.4.5.1.3. Flocculation/coagulation
        • 6.4.5.1.4. Electrostatic coagulation/concentration
      • 6.4.5.2. Companies
    • 6.4.6. Destruction technologies
      • 6.4.6.1. PFAS waste management
      • 6.4.6.2. Landfilling of PFAS-containing waste
      • 6.4.6.3. Thermal treatment
      • 6.4.6.4. Liquid-phase PFAS destruction
      • 6.4.6.5. Electrochemical oxidation
      • 6.4.6.6. Supercritical water oxidation (SCWO)
      • 6.4.6.7. Hydrothermal alkaline treatment (HALT)
      • 6.4.6.8. Plasma treatment
      • 6.4.6.9. Photocatalysis
      • 6.4.6.10. Sonochemical oxidation
      • 6.4.6.11. Challenges
      • 6.4.6.12. Companies
  • 6.5. PFAS Solids Treatment
    • 6.5.1. PFAS migration
    • 6.5.2. Soil washing (or soil scrubbing)
    • 6.5.3. Soil flushing
    • 6.5.4. Thermal desorption
    • 6.5.5. Phytoremediation
    • 6.5.6. In-situ immobilization
    • 6.5.7. Pyrolysis and gasification
    • 6.5.8. Plasma
    • 6.5.9. Supercritical water oxidation (SCWO)
  • 6.6. Companies

7. MARKET ANALYSIS AND FUTURE OUTLOOK

  • 7.1. Current Market Size and Segmentation
    • 7.1.1. Global PFAS Market Overview
    • 7.1.2. Regional Market Analysis
      • 7.1.2.1. North America
      • 7.1.2.2. Europe
      • 7.1.2.3. Asia-Pacific
      • 7.1.2.4. Latin America
      • 7.1.2.5. Middle East and Africa
    • 7.1.3. Market Segmentation by Industry
      • 7.1.3.1. Textiles and Apparel
      • 7.1.3.2. Food Packaging
      • 7.1.3.3. Firefighting Foams
      • 7.1.3.4. Electronics & semiconductors
      • 7.1.3.5. Automotive
      • 7.1.3.6. Aerospace
      • 7.1.3.7. Construction
      • 7.1.3.8. Others
  • 7.2. Impact of Regulations on Market Dynamics
    • 7.2.1. Shift from Long-Chain to Short-Chain PFAS
    • 7.2.2. Growth in PFAS-Free Alternatives Market
    • 7.2.3. Regional Market Shifts Due to Regulatory Differences
  • 7.3. Emerging Trends and Opportunities
    • 7.3.1. Green Chemistry Innovations
    • 7.3.2. Circular Economy Approaches
    • 7.3.3. Digital Technologies for PFAS Management
  • 7.4. Challenges and Barriers to PFAS Substitution
    • 7.4.1. Technical Performance Gaps
    • 7.4.2. Cost Considerations
    • 7.4.3. Regulatory Uncertainty
  • 7.5. Future Market Projections
    • 7.5.1. Short-Term Outlook (1-3 Years)
    • 7.5.2. Medium-Term Projections (3-5 Years)
    • 7.5.3. Long-Term Scenarios (5-10 Years)

8. COMPANY PROFILES (49 company profiles)

9. RESEARCH METHODOLOGY

10. REFERENCES

List of Tables

  • Table 1. Established applications of PFAS
  • Table 2. PFAS chemicals segmented by non-polymers vs polymers
  • Table 3. Non-polymeric PFAS
  • Table 4. Chemical structure and physiochemical properties of various perfluorinated surfactants
  • Table 5. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects
  • Table 6. Examples of short-chain PFAS
  • Table 7. Other non-polymeric PFAS
  • Table 8. Examples of fluoropolymers
  • Table 9. Examples of side-chain fluorinated polymers
  • Table 10. Applications of PFAs
  • Table 11. PFAS surfactant properties
  • Table 12. List of PFAS alternatives
  • Table 13. Common PFAS and their regulation
  • Table 14. International PFAS regulations
  • Table 15. European Union Regulations
  • Table 16. United States Regulations
  • Table 17. PFAS Regulations in Asia-Pacific Countries
  • Table 18. Identified uses of PFAS in semiconductors
  • Table 19. Alternatives to PFAS in Semiconductors
  • Table 20. Key properties of PFAS in water-repellent materials
  • Table 21. Initiatives by outdoor clothing companies to phase out PFCs
  • Table 22. Comparative analysis of Alternatives to PFAS for textiles
  • Table 23. Companies developing PFAS alternatives for textiles
  • Table 24. Applications of PFAS in Food Packaging
  • Table 25. Regulation related to PFAS in food contact materials
  • Table 26. Applications of cellulose nanofibers (CNF)
  • Table 27. Companies developing PFAS alternatives for food packaging
  • Table 28. Applications and purpose of PFAS in paints and coatings
  • Table 29. Companies developing PFAS alternatives for paints and coatings
  • Table 30. Applications of Ion Exchange Membranes
  • Table 31. Key aspects of PEMELs
  • Table 32. Membrane Degradation Processes Overview
  • Table 33. PFSA Membranes & Key Players
  • Table 34. Competing Membrane Materials
  • Table 35. Comparative analysis of membrane properties
  • Table 36. Processes for manufacturing of perfluorosulfonic acid (PFSA) membranes
  • Table 37. PFSA Resin Suppliers
  • Table 38. CCM Production Technologies
  • Table 39. Comparison of Coating Processes
  • Table 40. Alternatives to PFAS in catalyst coated membranes
  • Table 41. Key Properties and Considerations for RFB Membranes
  • Table 42. PFSA Membrane Manufacturers for RFBs
  • Table 43. Alternative Materials for RFB Membranes
  • Table 44. Alternative Polymer Materials for Ion Exchange Membranes
  • Table 45. Hydrocarbon Membranes for PEM Fuel Cells
  • Table 46. Companies developing PFA alternatives for fuel cell membranes
  • Table 47. Identified uses of PFASs in the energy sector
  • Table 48. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells)
  • Table 49: Anti-icing and de-icing nanocoatings product and application developers
  • Table 50. Companies developing alternatives to PFAS in energy (excluding fuel cells)
  • Table 51. Commercial low-loss organic laminates-key properties at 10 GHz
  • Table 52. Key Properties of PTFE to Consider for 5G Applications
  • Table 53. Applications of PTFE in 5G in a table
  • Table 54. Challenges in PTFE-based laminates in 5G
  • Table 55. Key regulations affecting PFAS use in low-loss materials
  • Table 56. Commercial low-loss materials suitable for 5G applications
  • Table 57. Key low-loss materials suppliers
  • Table 58. Alternatives to PFAS for low-loss applications in 5G
  • Table 59. Benchmarking LTCC materials suitable for 5G applications
  • Table 60. Benchmarking of various glass substrates suitable for 5G applications
  • Table 61. Applications of PFAS in cosmetics
  • Table 62. Alternatives to PFAS for various functions in cosmetics
  • Table 63. Companies developing PFAS alternatives in cosmetics
  • Table 64. Applications of PFAS in Automotive Industry
  • Table 65. Application of PFAS in Electric Vehicles
  • Table 66.Suppliers of PFAS-free Coolants and Refrigerants for EVs
  • Table 67.Immersion Fluids for EVs
  • Table 68. Immersion Cooling Fluids Requirements
  • Table 69. Single-phase vs two-phase cooling
  • Table 70. Companies producing Immersion Fluids for EVs
  • Table 71. Alternatives to PFAS in the automotive sector
  • Table 72. Use of PFAS in the electronics sector
  • Table 73. Companies developing alternatives to PFAS in electronics & semiconductors
  • Table 74. Applications of PFAS in Medical Devices
  • Table 75. Alternatives to PFAS in medical devices
  • Table 76. Readiness level of PFAS alternatives
  • Table 77. Comparing PFAS-free alternatives to traditional PFAS-containing release agents
  • Table 78. Novel PFAS-free CTPI structures
  • Table 79. Applications of PFAS-free CTPIs in flexible electronics
  • Table 80. Current methods for PFAS elimination
  • Table 81. Companies developing processes for PFA degradation and elimination
  • Table 82. PFAS drinking water treatment market forecast 2025-2035
  • Table 83. Pathways for PFAS environmental contamination
  • Table 84. Global PFAS Drinking Water Limits
  • Table 85. USA PFAS Regulations
  • Table 86. EU PFAS Regulations
  • Table 87. Global PFAS Regulations
  • Table 88. Applications requiring PFAS water treatment
  • Table 89. Point-of-Use (POU) and Point-of-Entry (POE) Systems
  • Table 90. PFAS treatment approaches
  • Table 91. Typical Flow Rates for Different Facilities
  • Table 92. In-Situ vs Ex-Situ Treatment Comparison
  • Table 93. Technology Readiness Level (TRL) for PFAS Removal
  • Table 94. Removal technologies for PFAS in water
  • Table 95. Suppliers of GAC media for PFAS removal applications
  • Table 96. Commercially Available PFAS-Selective Resins
  • Table 97. Estimated Treatment Costs by Method
  • Table 98. Comparison of technologies for PFAS removal
  • Table 99. Emerging removal technologies for PFAS in water
  • Table 100. Companies in emerging PFAS removal technologies
  • Table 101. PFAS Destruction Technologies
  • Table 102. Technology Readiness Level (TRL) for PFAS Destruction Technologies
  • Table 103. Thermal Treatment Types
  • Table 104. Liquid-Phase Technology Segmentation
  • Table 105. PFAS Destruction Technologies Challenges
  • Table 106. Companies developing PFAS Destruction Technologies
  • Table 107. Treatment Methods for PFAS-Contaminated Solids
  • Table 108. Companies developing processes for PFAS water and solid treatment
  • Table 109. Global PFAS Market Projection (2023-2035), Billions USD
  • Table 110. Regional PFAS Market Projection (2023-2035), Billions USD
  • Table 111. PFAS Market Segmentation by Industry (2023-2035), Billions USD
  • Table 112. Long-Chain PFAS andShort-Chain PFAS Market Share
  • Table 113.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD)
  • Table 114. Regional Market Data (2023) for PFAS and trends
  • Table 115. Market Opportunities for PFAS alternatives
  • Table 116. Circular Economy Initiatives and Potential Impact
  • Table 117. Digital Technology Applications and Market Potential
  • Table 118. Performance Comparison Table
  • Table 119. Cost Comparison Table-PFAS and PFAS alternatives
  • Table 120. Market Size 2023-2026 (USD Billions)
  • Table 121. Market size 2026-2030 (USD Billions)
  • Table 122. Long-Term Market Projections (2035)

List of Figures

  • Figure 1. Types of PFAS
  • Figure 2. Structure of PFAS-based polymer finishes
  • Figure 3. Water and Oil Repellent Textile Coating
  • Figure 4. Main PFAS exposure route
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure
  • Figure 6. Photolithography process in semiconductor manufacturing
  • Figure 7. PFAS containing Chemicals by Technology Node
  • Figure 8. The photoresist application process in photolithography
  • Figure 9: Contact angle on superhydrophobic coated surface
  • Figure 10. PEMFC Working Principle
  • Figure 11. Schematic representation of a Membrane Electrode Assembly (MEA)
  • Figure 12. Slippery Liquid-Infused Porous Surfaces (SLIPS)
  • Figure 13. Aclarity's Octa system
  • Figure 15. Process for treatment of PFAS in water
  • Figure 18. Octa(TM) system
  • Figure 19. Gradiant Forever Gone
  • Figure 20. PFAS Annihilator-R unit