压电MEMS的全球市场(2025年~2035年)
市场调查报告书
商品编码
1650828

压电MEMS的全球市场(2025年~2035年)

Global PiezoMEMS Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 258 Pages, 63 Tables, 29 Figures | 订单完成后即时交付

价格

压电微机电感测器及致动器应用广泛。与传统的电容式MEMS相比,压电MEMS具有卓越的性能和製造效率。压电薄膜,尤其是PZT(压电陶瓷),正在构成新型高成长MEMS产品的基础,例如麦克风和微镜、气体感测器、影像稳定器、超音波换能器、列印效果卓越的压电印表机、AR眼镜以及用于增强通讯的射频滤波器。

压电MEMS领域是MEMS产业中重要的细分领域,在消费性电子、通讯和新兴物联网应用领域尤其突出。

预计压电MEMS市场的成长速度将超过更广泛的MEMS市场,主要推动因素如下:

  • 5G网路发展与未来6G的发展
  • 汽车安全和自动驾驶系统中的应用日益普及
  • 医疗影像与诊断应用的成长
  • 新型消费性电子应用的涌现

预计新兴应用(尤其是在物联网、汽车和医疗领域)将推动市场持续成长直至2035年,并有可能在量子运算和先进感测系统等新领域实现突破性应用。

本报告分析了全球压电MEMS市场,并对2025-2035年的技术发展、市场趋势和成长机会提供了详细的见解。报告重点关注新技术和市场动态,并考察了从材料、製造到最终使用的整个价值链。

目录

第1章 简介

  • 全球MEMS市场
  • 压电技术概要
  • 压电MEMS技术的演进
  • 压电MEMS市场(2020年~2024年)
  • 技术形势
  • 法规结构

第2章 压电材料和技术

  • 压电材料的基础
  • 材料范畴
  • 加工技术

第3章 市场分析与预测(2025年~2035年)

  • 市场规模与成长
    • 全球收益的预测
    • 数量的预测
    • 地区的分析
  • 市场区隔
    • 不同设备类型
    • 各材料类型
    • 各最终用途产业
  • 晶圆层级的分析
    • 晶圆开始:各材料
    • 晶圆尺寸趋势
    • 製造能力
    • 地区的生产的分布

第4章 用途市场区隔

  • 感测器
    • 麦克风
    • 加速计
    • 应力感测器
    • 市场预测
  • 致动器
    • 喷墨印表机喷头
    • 微型喇叭
    • 光学MEMS
    • 市场预测
  • 转换器
    • 超音波指纹感测器
    • 医疗图像
    • 市场预测
  • RF过滤器
    • BAW技术
    • FBAR/SMR解决方案
    • 市场预测

第5章 供应链

第6章 技术趋势与革新

  • 材料的革新
  • 製造的进步
  • 设备的革新

第7章 课题与机会

  • 技术课题
  • 市场障碍
  • 成长机会
  • 未来的用途

第8章 企业简介(企业106公司的简介)

第9章 附录

第10章 参考文献

Piezoelectric microelectromechanical sensors and actuators are used in a wide variety of applications. Compared to traditional capacitive MEMS, piezoelectric MEMS deliver superior performance and manufacturing efficiency. Piezoelectric thin films, particularly PZT, form the new basis for high-growth MEMS products such as microphones and micromirrors, gas sensors, image stabilizers, ultrasonic transducers, piezo printers that deliver excellent printing results, AR glasses and RF filters for enhanced telecommunications.

The piezoMEMS sector represents a significant segment within the broader MEMS industry, with particularly strong presence in consumer electronics, telecommunications, and emerging IoT applications.

The piezoMEMS market is expected to grow significantly faster than the broader MEMS driven by:

  • Expansion of 5G networks and eventual 6G development
  • Increasing adoption in automotive safety and autonomous systems
  • Growth in medical imaging and diagnostic applications
  • Emergence of new consumer electronics applications

The emergence of new applications, particularly in IoT, automotive, and medical sectors, is expected to drive sustained growth through 2035, with potential for breakthrough applications in emerging fields such as quantum computing and advanced sensing systems.

"The Global PiezoMEMS Market 2025-2035" report analyzes the global piezoelectric MEMS (PiezoMEMS) sector, providing detailed insights into technology developments, market trends, and growth opportunities from 2025 to 2035. The study examines the entire value chain from materials and manufacturing to end-user applications, with particular focus on emerging technologies and market dynamics.

Report contents include:

  • Extensive analysis of the PiezoMEMS industry, including detailed market forecasts, technology assessments, and competitive analysis.
  • Key applications such as RF filters, sensors, actuators, and transducers across various sectors including consumer electronics, automotive, medical, and industrial applications.
  • Key Market Segments covered include:
    • Sensors (microphones, accelerometers, force sensors)
    • Actuators (inkjet printheads, microspeakers, optical MEMS)
    • Transducers (ultrasonic fingerprint sensors, medical imaging)
    • RF Filters (BAW technology, FBAR/SMR solutions)
  • Detailed market analysis including:
    • Global revenue projections (2025-2035)
    • Volume forecasts by device type
    • Regional market analysis
    • Production capacity assessment
    • Wafer-level analysis
    • Supply chain evaluation
  • Technology roadmaps and development trends
  • Manufacturing strategies and challenges
  • Regional market dynamics
  • Detailed analysis of key application areas:
    • Consumer electronics (smartphones, wearables)
    • Automotive sensors and actuators
    • Medical devices and imaging systems
    • Industrial applications
    • IoT and emerging applications
  • Manufacturing and Production:
    • Wafer fabrication processes
    • Integration technologies
    • Quality control methods
    • Capacity utilization
    • Regional production distribution
    • Cost analysis
  • Technology Trends and Innovation:
    • Material innovations and enhancements
    • Manufacturing advances
    • Device miniaturization
    • Performance improvements
    • Novel applications
    • Integration strategies
  • Market opportunities and growth drivers:
    • Technical barriers and solutions
    • Market adoption factors
    • Competition analysis
    • Environmental considerations
    • Regulatory compliance
    • Future opportunities
    • Comprehensive profiles of over 100 companies including:
    • Major MEMS manufacturers
    • Material suppliers
    • Equipment providers
    • Technology developers
    • End-product manufacturers

Companies covered include:

  • AAC Technologies
  • Aeponyx
  • AKM
  • Akoustis
  • AlphaMOS
  • Alps Alpine
  • AMFitzgerald-MEMS Infinity
  • Amphenol
  • Analog Devices
  • Anello Photonics
  • Asia Pacific Microsystems
  • ASMC (Advanced Semiconductor Manufacturing Corporation Limited)
  • Aspinity
  • Atomica
  • Beijing Zhixin Tech
  • Blickfeld
  • Bosch
  • Broadcom
  • Butterfly Network
  • Canon Inc.
  • CEA Leti
  • Cirrus Logic
  • Denso
  • EpicMEMS
  • eXo
  • Flusso
  • Formfactor
  • Fraunhofer IPMS
  • Fujifilm Dimatix
  • Gettop
  • GMEMS Technologies
  • Goermicro
  • Goertek
  • Guide Sensmart Technology Co. Ltd.
  • GWIC (Guangdong WIT Integrated Circuits Co. Ltd.)
  • Hanking Electronics
  • Heimann Sensor
  • Hewlett Packard
  • Hikvision (Hikmicro)
  • Honeywell
  • HuaHong Grace Semiconductor Manufacturing Corporation
  • Huntersun
  • Hypernano
  • IceMOS Technology Ltd.
  • Illumina
  • Infineon Technologies
  • InfiRay
  • Instrumems
  • Melexis
  • MEMJET
  • MEMSCAP SA
  • MEMSDrive
  • MEMSensing
  • MEMSIC
  • MEMSonics
  • Merit Sensor
  • Merry Electronics
  • Microchip Technology Inc.
  • Microfab Technologies Inc.
  • Micronit Microtechnologies B.V.
  • Minebea Mitsumi
  • Mirrorcle
  • Murata
  • Nanox

and more......

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. The Global MEMS market
    • 1.1.1. Historical
    • 1.1.2. Current market (2024-2025)
  • 1.2. Overview of Piezoelectric Technology
    • 1.2.1. Fundamentals of Piezoelectricity
    • 1.2.2. Direct and Inverse Piezoelectric Effects
    • 1.2.3. Key Parameters and Measurements
    • 1.2.4. Design Considerations
  • 1.3. Evolution of PiezoMEMS Technology
  • 1.4. PiezoMEMS Market 2020-2024
    • 1.4.1. Market Size and Growth Trends
    • 1.4.2. Application Development
    • 1.4.3. Technology Advancement
  • 1.5. Technology Landscape
    • 1.5.1. Core Technologies
    • 1.5.2. PiezoMEMS technology as a key enabler for implementing generative AI capabilities in edge devices
    • 1.5.3. Integration Approaches
    • 1.5.4. Competing Technologies
    • 1.5.5. Technology Readiness Levels
  • 1.6. Regulatory Framework
    • 1.6.1. Environmental Regulations
    • 1.6.2. Safety Requirements
    • 1.6.3. Certification Processes
    • 1.6.4. Future Regulatory Trends

2. PIEZOELECTRIC MATERIALS AND TECHNOLOGIES

  • 2.1. Fundamentals of Piezoelectric Materials
    • 2.1.1. Working Principles
      • 2.1.1.1. Crystal Structure
      • 2.1.1.2. Polarization Mechanisms
      • 2.1.1.3. Electromechanical Coupling
      • 2.1.1.4. Material Physics
    • 2.1.2. Key Performance Metrics
      • 2.1.2.1. Piezoelectric Coefficients
      • 2.1.2.2. Coupling Factors
      • 2.1.2.3. Quality Factors
      • 2.1.2.4. Temperature Stability
      • 2.1.2.5. Reliability Metrics
    • 2.1.3. Manufacturing Processes
      • 2.1.3.1. Thin Film Deposition
      • 2.1.3.2. Material Processing
      • 2.1.3.3. Quality Control
      • 2.1.3.4. Process Integration
      • 2.1.3.5. Yield Management
  • 2.2. Material Categories
    • 2.2.1. Aluminum Nitride (AlN)
      • 2.2.1.1. Properties and Characteristics
      • 2.2.1.2. Applications
      • 2.2.1.3. Cost Structure
    • 2.2.2. Scandium-doped AlN
      • 2.2.2.1. Doping Effects
      • 2.2.2.2. Performance Improvements
      • 2.2.2.3. Manufacturing Challenges
      • 2.2.2.4. Cost-Benefit Analysis
      • 2.2.2.5. Market Adoption
    • 2.2.3. Lead Zirconate Titanate (PZT)
      • 2.2.3.1. Material Properties
      • 2.2.3.2. Processing Methods
      • 2.2.3.3. Performance Characteristics
      • 2.2.3.4. Environmental Concerns
      • 2.2.3.5. Application Areas
    • 2.2.4. Emerging Materials
      • 2.2.4.1. KNN
      • 2.2.4.2. LiNbO3
  • 2.3. Processing Technologies
    • 2.3.1. Thin-film Deposition
      • 2.3.1.1. Sputtering Techniques
      • 2.3.1.2. Chemical Vapor Deposition
      • 2.3.1.3. Sol-Gel Processing
      • 2.3.1.4. Other Methods
    • 2.3.2. Integration Techniques
      • 2.3.2.1. CMOS Integration
      • 2.3.2.2. Wafer Bonding
      • 2.3.2.3. Packaging Solutions
      • 2.3.2.4. Novel Approaches
    • 2.3.3. Quality Control Methods

3. MARKET ANALYSIS AND FORECASTS 2025-2035

  • 3.1. Market Size and Growth
    • 3.1.1. Global Revenue Projections
    • 3.1.2. Volume Forecasts
      • 3.1.2.1. Unit Production Trends
      • 3.1.2.2. Volume by Device Type
      • 3.1.2.3. Production Capacity Analysis
      • 3.1.2.4. Capacity Utilization Rates
    • 3.1.3. Regional Analysis
      • 3.1.3.1. North America
      • 3.1.3.2. Europe
      • 3.1.3.3. Asia Pacific
      • 3.1.3.4. China
  • 3.2. Market Segmentation
    • 3.2.1. By Device Type
    • 3.2.2. By Material Type
    • 3.2.3. By End-user Industry
  • 3.3. Wafer-level Analysis
    • 3.3.1. Wafer Starts by Material
    • 3.3.2. Wafer Size Trends
    • 3.3.3. Manufacturing Capacity
    • 3.3.4. Regional Production Distribution

4. APPLICATION SEGMENTS

  • 4.1. Sensors
    • 4.1.1. Microphones
    • 4.1.2. Accelerometers
    • 4.1.3. Force Sensors
    • 4.1.4. Market Forecast
  • 4.2. Actuators
    • 4.2.1. Inkjet Printheads
    • 4.2.2. Microspeakers
    • 4.2.3. Optical MEMS
    • 4.2.4. Market Forecast
  • 4.3. Transducers
    • 4.3.1. Ultrasonic Fingerprint Sensors
    • 4.3.2. Medical Imaging
    • 4.3.3. Market Forecast
  • 4.4. RF Filters
    • 4.4.1. BAW Technology
    • 4.4.2. FBAR/SMR Solutions
    • 4.4.3. Market Forecast

5. SUPPLY CHAIN

6. TECHNOLOGY TRENDS AND INNOVATION

  • 6.1. Material Innovations
    • 6.1.1. Enhanced Performance Materials
    • 6.1.2. Lead-free Alternatives
    • 6.1.3. Novel Compositions
  • 6.2. Manufacturing Advances
    • 6.2.1. Process Improvements
    • 6.2.2. Integration Technologies
    • 6.2.3. Quality Control Methods
  • 6.3. Device Innovations
    • 6.3.1. Miniaturization Trends
    • 6.3.2. Performance Enhancements
    • 6.3.3. New Applications

7. CHALLENGES AND OPPORTUNITIES

  • 7.1. Technical Challenges
  • 7.2. Market Barriers
  • 7.3. Growth Opportunities
  • 7.4. Future Applications

8. COMPANY PROFILES (106 company profiles)

9. APPENDICES

  • 9.1. Research Methodology
  • 9.2. Abbreviations

10. REFERENCES

List of Tables

  • Table 1. Global MEMS market 2020-2024 (Billion USD), by end user market
  • Table 2. Key piezoelectric parameters and their significance
  • Table 3. PiezoMEMS Market 2020-2024 (Billion USD)
  • Table 4. Core Technologies in PiezoMEMS
  • Table 5. PiezoMEMS Integration Approaches
  • Table 6. Comparison of Competing Technologies
  • Table 7. PiezoMEMS Technology Readiness Levels
  • Table 8. Key regulations affecting piezoMEMS industry
  • Table 9. PiezoMEMS key performance metrics
  • Table 10. PiezoMEMS Manufacturing Processes
  • Table 11. Thin film deposition in piezoMEMS fabrication
  • Table 12. Material processing
  • Table 13. Quality control in piezoMEMS manufacturing
  • Table 14. Process integration for piezoMEMS
  • Table 15. Yield management in piezoMEMS manufacturing
  • Table 16. Materials Categories for PiezoMEMS
  • Table 17. AlN Properties and Applications
  • Table 18. Cost-Benefit Analysis: ScAlN vs. AlN
  • Table 19. Sc-AlN vs standard AlN comparison
  • Table 20. PZT Variations and Properties
  • Table 21. PZT Processing Methods
  • Table 22. PZT performance metrics
  • Table 23. PZT Application Areas
  • Table 24. Emerging materials comparison
  • Table 25. Deposition Technology Comparison
  • Table 26. Process parameters for different methods
  • Table 27. Integration Challenges and Solutions
  • Table 28. Quality Control Parameters
  • Table 29. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD)
  • Table 30. Estimated Unit Production (Millions), 2020-2035
  • Table 31. Production volumes by device type, 2020-2035
  • Table 32. Capacity Utilization Rates
  • Table 33. PiezoMEMS Market in North America
  • Table 34. PiezoMEMS Market in Europe
  • Table 35. PiezoMEMS Market in Asia-Pacific
  • Table 36. PiezoMEMS Market in China
  • Table 37. Regional market shares and growth rates
  • Table 38. Global PiezoMEMS Revenues by Device Type 2020-2035
  • Table 39. Global PiezoMEMS revenues by material type 2020-2035
  • Table 40. Global PiezoMEMS revenues by end-user industry 2020-2035
  • Table 41. Wafer production trends
  • Table 42. Wafer Starts by Material
  • Table 43. PiezoMEMS wafer share by fab
  • Table 44. PiezoMEMS Applications in Sensors
  • Table 45. Global PiezoMEMS market forecast in Sensors (2024-2035)
  • Table 46. PiezoMEMS in Actuators
  • Table 47. Global PiezoMEMS market forecast Actuators (2024-2035)
  • Table 48. PiezoMEMS in Transducers
  • Table 49. Global PiezoMEMS market forecast in Transducers (2024-2035)
  • Table 50. PiezoMEMS in RF Filters
  • Table 51. Global PiezoMEMS market forecast in Transducers (2024-2035)
  • Table 52. Enhanced Performance Materials for PiezoMEMS
  • Table 53. PiezoMEMS Lead-free Alternatives
  • Table 54. Manufacturing Advances
  • Table 55. Integration technologies for piezoMEMS
  • Table 56. Miniaturization Trends
  • Table 57. Performance enhancements in piezoMEMS devices
  • Table 58. Emerging applications for piezoMEMS technologies
  • Table 59. PiezoMEMS technical challenges
  • Table 60. Market barriers for piezoMEMS technologies
  • Table 61. Growth opportunities for piezoMEMS
  • Table 62. Future applications analysis
  • Table 63. Abbreviations

List of Figures

  • Figure 1. Global MEMS market 2020-2024 (Billions USD), by end user market
  • Figure 2. Schematic illustration of piezoelectric effect
  • Figure 3. Evolution of PiezoMEMS Technology
  • Figure 4. PiezoMEMS Market 2020-2024 (Billion USD)
  • Figure 5. PiezoMEMS material roadmap
  • Figure 6. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD)
  • Figure 7. Estimated Unit Production (Millions), 2020-2035
  • Figure 8. Global PiezoMEMS revenues by device type 2020-2035
  • Figure 9. Global PiezoMEMS revenues by material type 2020-2035
  • Figure 10. Global PiezoMEMS revenues by end-user industry 2020-2035
  • Figure 11. Wafer capacity by region
  • Figure 12. Global PiezoMEMS market forecast in Sensors (2024-2035) BILLIONS USD
  • Figure 13. Global PiezoMEMS market forecast Actuators (2024-2035), BILLIONS USD
  • Figure 14. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD
  • Figure 15. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD
  • Figure 16. PiezoMEMS Market supply chain
  • Figure 17. Bosch - BMI270 6-axis IMU
  • Figure 18. Broadcom - FBAR RF Filter Products
  • Figure 19. Butterfly Network - Butterfly iQ+ Ultrasound System
  • Figure 20. Fujifilm Dimatix - Samba Printhead Technology
  • Figure 21. Infineon - XENSIV(TM) MEMS Microphones
  • Figure 22. Murata - SAW Filter Products
  • Figure 23. poLight - TLens-R Autofocus Actuator
  • Figure 24. Qualcomm - 3D Sonic Sensor (Ultrasonic Fingerprint)
  • Figure 25. Qorvo - BAW Filter Portfolio
  • Figure 26. STMicroelectronics - MEMS microphones (MP23DB01HP)
  • Figure 27. TDK InvenSense - ICP-10125 High-Performance Pressure Sensor
  • Figure 28. USound - MEMS Speaker Technology
  • Figure 29. xMEMS - Montara Microspeaker