量子感测器的全球市场(2025年~2035年)
市场调查报告书
商品编码
1671369

量子感测器的全球市场(2025年~2035年)

The Global Quantum Sensors Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 189 Pages, 70 Tables, 37 Figures | 订单完成后即时交付

价格

量子感测正在成为最有市场应用潜力的量子技术。量子感测器是一种革命性的测量仪器,它利用基本的量子力学现象来实现前所未有的灵敏度、精度和超越经典极限的能力。这些先进的仪器利用迭加、纠缠、量子相干性和物质的量子态等量子特性,以惊人的精度检测和测量物理量。量子感测器的核心工作原理是让量子系统与被测量的物理参数相互作用。这种相互作用会产生可检测的量子态变化,并且可以精确监测。与受电子杂讯和其他物理限制的传统感测器不同,量子感测器可以接近或达到量子力学本身施加的基本极限,例如海森堡不确定性原理和标准量子极限。

目前的市场格局特征是基于技术类型和应用领域的细分。原子钟是最成熟的领域,其次是磁性感测器(主要是SQUID和基于NV的磁力仪),约占30%。量子重力仪、射频感测器和其他专门的量子感测技术占据了剩余的市场占有率。多个关键领域的商业应用正在加速发展。电信公司正在部署原子钟,并开始研究用于下一代网路基础设施的量子射频感测器。在医疗领域,NV 钻石感测器正在被研究用于先进的 MRI 和神经成像应用。资源勘探公司正在现场测试量子重力仪以增强地下测绘,半导体产业正在研究用于先进品质控制的量子感测器。

本报告提供全球量子感测器市场相关调查分析,提供技术详细内容,投资形势,竞争情形,企业简介等资讯。

目录

第1章 摘要整理

  • 第1和第2量子革命
  • 当前量子技术市场格局
  • 投资趋势
  • 世界各国政府的努力
  • 产业趋势(2020-2025)
  • 采用量子技术的课题
  • 市场推动因素
  • 市场与技术课题
  • 科技趋势与创新
  • 市场预测与展望
  • 新用途和用例
  • 对量子感测器技术进行基准测试
  • 潜在的颠覆性技术
  • 量子感测器的全球市场

第2章 简介

  • 所谓量子感测
  • 量子感测器的种类
  • 量子感测的原理
  • 量子感测器的价值主张
  • 目前技术准备度
  • SWOT分析

第3章 原子手錶

  • 技术概要
  • 市场
  • 蓝图
  • 高频振盪器
  • 铯原子
  • 自我校对
  • 新的原子手錶技术
  • 光原子手錶
  • 企业
  • SWOT分析
  • 市场预测

第4章 量子磁场感测器

  • 技术概述
  • 使用动机
  • 市场机遇
  • 超导量子干涉磁力仪(Squid)
  • 光泵磁力仪(OPM)
  • 隧道磁阻感知器(TMR)
  • 氮空位中心(NV中心)
  • 市场预测

第5章 量子重力计

  • 技术概要
  • 用途
  • 蓝图
  • 主要企业
  • 市场预测
  • SWOT分析

第6章 量子陀螺仪

  • 技术的说明
  • 用途
  • 蓝图
  • 主要企业
  • SWOT分析

第7章 量子影像感测器

  • 技术概要
  • 用途
  • SWOT分析
  • 市场预测
  • 主要企业

第8章 量子雷达

  • 技术概要
  • 用途

第9章 量化学感测器

  • 技术概要
  • 商业活动

第10章 量子RF现场感测器

  • 概要
  • 基于里德堡原子的电场感测器和无线接收器
  • 氮空位中心钻石电场感测器及无线接收器
  • 市场

第11章 量子NEMS·MEMS

  • 技术概要
  • 种类
  • 用途
  • 课题

第12章 案例研究

  • 医疗的量子感测器:疾病的早期发现
  • 军事用途:强化导航系统
  • 环境监测
  • 金融部门:高频率交易
  • 量子网际网路:安全的通讯网路

第13章 最终用途产业

  • 医疗·生命科学
  • 防卫·军事
  • 环境监测
  • 石油、天然气
  • 运输·汽车
  • 其他的产业

第14章 企业简介(企业57公司的简介)

第15章 附录

第16章 参考文献

Quantum sensing is emerging as the quantum technology with the most immediate market potential. Quantum sensors represent a revolutionary class of measurement devices that leverage fundamental quantum mechanical phenomena to achieve unprecedented sensitivity, precision, and capabilities beyond classical limitations. These advanced instruments exploit quantum properties such as superposition, entanglement, quantum coherence, and quantum states of matter to detect and measure physical quantities with extraordinary accuracy. At their core, quantum sensors operate by making quantum systems interact with the physical parameter being measured. This interaction causes detectable changes in the quantum state that can be precisely monitored. Unlike classical sensors that are limited by electronic noise and other physical constraints, quantum sensors can approach or reach fundamental limits imposed by quantum mechanics itself, such as the Heisenberg uncertainty principle or the standard quantum limit.

Several distinct technologies comprise the quantum sensing family. Superconducting Quantum Interference Devices (SQUIDs) use quantum effects in superconducting loops to detect incredibly small magnetic fields. Nitrogen-Vacancy (NV) centers in diamond utilize quantum states of atomic defects for sensing magnetic fields, electric fields, and temperature with nanoscale spatial resolution. Atomic vapor cell technologies like those used in atomic clocks and magnetometers leverage quantum states of atoms for precise time-keeping and field detection. Cold atom interferometers exploit wave-like properties of matter for measuring gravity, acceleration, and rotation with extraordinary precision.

The defining characteristics of quantum sensors include their ability to achieve unprecedented sensitivity, their capacity to perform measurements traceable to fundamental physical constants (providing intrinsic calibration), their potential for operating across extreme environmental conditions, and their capability to measure quantities that conventional sensors cannot detect. Many quantum sensors can also provide vector information (direction and magnitude) rather than just scalar values, and can operate across exceptionally wide dynamic ranges or frequency bands without hardware modifications. As fabrication techniques advance and supporting technologies mature, quantum sensors are transitioning from specialized laboratory instruments to field-deployable systems, opening new possibilities for measurement in numerous scientific and industrial applications.

The current market landscape is characterized by a segmentation based on both technology type and application domains. Atomic clocks represent the most mature sector, followed by magnetic sensors (predominantly SQUIDs and NV-based magnetometers) at approximately 30%. Quantum gravimeters, RF sensors, and other specialized quantum sensing technologies comprise the remaining market share. Commercial adoption is accelerating in several key sectors. Telecommunications companies are deploying atomic clocks and beginning to explore quantum RF sensors for next-generation network infrastructure. The healthcare sector is investigating NV-diamond sensors for advanced MRI and neural imaging applications. Resource exploration companies are field-testing quantum gravimeters for enhanced subsurface mapping, while the semiconductor industry is exploring quantum sensors for advanced quality control.

"The Global Quantum Sensors Market 2025-2035" is an in-depth analysis of the rapidly evolving quantum sensing landscape, providing essential intelligence for investors, technology companies, and end-users navigating this transformative field.

Report contents include:

  • Market Analysis: Detailed examination of the global quantum sensors market with segmentation by sensor type, volume projections, pricing trends, and end-use industry applications from 2025 to 2035.
  • Technology Deep Dives: Comprehensive coverage of all major quantum sensing technologies, including atomic clocks, magnetic field sensors (SQUIDs, OPMs, TMRs, NV-centers), quantum gravimeters, gyroscopes, image sensors, RF field sensors, and emerging NEMS/MEMS technologies.
  • Investment Landscape: Analysis of funding trends, major investment rounds, and government initiatives worldwide that are accelerating quantum sensing commercialization.
  • Competitive Intelligence: Detailed profiles of 50+ companies developing quantum sensing technologies, from established defense contractors to innovative startups.
  • Application Roadmaps: Strategic insights into adoption timelines for key industries including healthcare, defense, environmental monitoring, oil and gas, transportation, and financial services.
  • Technology Readiness Assessment: Evaluation of current technological readiness levels (TRLs) for different quantum sensing modalities, helping stakeholders understand commercialization timelines.
  • Each quantum sensing technology is analyzed in dedicated chapters covering:
    • Technology principles and operating mechanisms
    • Market opportunities and application areas
    • Development roadmaps and commercialization timelines
    • Key players and competitive landscape analysis
    • SWOT analysis for each specific technology
    • Market forecasts and growth projections
  • End-Use Industry Analysis: Detailed examination of how quantum sensors are transforming:
    • Healthcare and Life Sciences (medical imaging, drug discovery, biosensing)
    • Defense and Military (navigation systems, underwater detection, communications)
    • Environmental Monitoring (climate research, geological surveys, disaster prediction)
    • Oil and Gas (exploration, surveying, pipeline monitoring)
    • Transportation (autonomous vehicles, aerospace navigation)
    • Other emerging applications (finance, agriculture, construction, mining)
  • Case Studies: Real-world implementations demonstrating quantum sensing advantages in healthcare diagnostics, military navigation, environmental monitoring, high-frequency trading, and quantum communication networks.
  • Company Profiles: Comprehensive profiles of 57 companies active in the quantum sensing ecosystem, including technology approaches, funding status, partnerships, and commercial progress. Companies profiled include Airbus, Aquark Technologies, Artilux, Atomionics, Bosch Quantum Sensing, Cerca Magnetics, Chipiron, Chiral Nano AG, Covesion, Delta g, EuQlid, Exail Quantum Sensors, Genesis Quantum Technology, ID Quantique, Infleqtion, Ligentec, M Squared Lasers, Mag4Health, Menlo Systems GmbH, Mesa Quantum, Miraex, Neuranics, Nomad Atomics, Nu Quantum, NVision, Phasor Innovation, PhotonForce, Polariton Technologies, Q.ANT, Qaisec, Q-CTRL, Qnami, QT Sense B.V., QuantaMap and more.....

The report combines rigorous quantitative market projections with qualitative expert analysis to provide actionable intelligence on the quantum sensing revolution. With quantum sensors poised to disrupt multiple industries through capabilities that surpass classical limits, this comprehensive market analysis serves as the definitive guide to navigating the opportunities and challenges in this rapidly developing field. Featuring exclusive data on market sizing, competitive benchmarking of quantum sensing technologies, and detailed analysis of over 50 company profiles, the "Global Quantum Sensors Market 2025-2035" report is an essential resource for anyone seeking to understand and capitalize on the quantum sensing revolution that will transform measurement capabilities across industries worldwide.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. First and second quantum revolutions
  • 1.2. Current quantum technology market landscape
    • 1.2.1. Key developments
  • 1.3. Investment Landscape
  • 1.4. Global government initiatives
  • 1.5. Industry developments 2020-2025
  • 1.6. Challenges for quantum technologies adoption
  • 1.7. Market Drivers
  • 1.8. Market and technology challenges
  • 1.9. Technology Trends and Innovations
  • 1.10. Market Forecast and Future Outlook
    • 1.10.1. Short-term Outlook (2025-2027)
    • 1.10.2. Medium-term Outlook (2028-2031)
    • 1.10.3. Long-term Outlook (2032-2035)
  • 1.11. Emerging Applications and Use Cases
  • 1.12. Benchmarking of Quantum Sensor Technologies
  • 1.13. Potential Disruptive Technologies
  • 1.14. Global market for quantum sensors
    • 1.14.1. By sensor type
    • 1.14.2. By volume
    • 1.14.3. By sensor price
    • 1.14.4. By end use industry

2. INTRODUCTION

  • 2.1. What is quantum sensing?
  • 2.2. Types of quantum sensors
    • 2.2.1. Comparison between classical and quantum sensors
  • 2.3. Quantum Sensing Principles
  • 2.4. Value proposition for quantum sensors
  • 2.5. Current Technological Readiness Levels
  • 2.6. SWOT analysis

3. ATOMIC CLOCKS

  • 3.1. Technology Overview
  • 3.2. Markets
  • 3.3. Roadmap
  • 3.4. High frequency oscillators
    • 3.4.1. Emerging oscillators
  • 3.5. Caesium atoms
  • 3.6. Self-calibration
  • 3.7. New atomic clock technologies
  • 3.8. Optical atomic clocks
    • 3.8.1. Chip-scale optical clocks
  • 3.9. Companies
  • 3.10. SWOT analysis
  • 3.11. Market forecasts

4. QUANTUM MAGNETIC FIELD SENSORS

  • 4.1. Technology overview
  • 4.2. Motivation for use
  • 4.3. Market opportunity
  • 4.4. Superconducting Quantum Interference Devices (Squids)
    • 4.4.1. Applications
    • 4.4.2. Key players
    • 4.4.3. SWOT analysis
  • 4.5. Optically Pumped Magnetometers (OPMs)
    • 4.5.1. Applications
    • 4.5.2. Key players
    • 4.5.3. SWOT analysis
  • 4.6. Tunneling Magneto Resistance Sensors (TMRs)
    • 4.6.1. Applications
    • 4.6.2. Key players
    • 4.6.3. SWOT analysis
  • 4.7. Nitrogen Vacancy Centers (N-V Centers)
    • 4.7.1. Applications
    • 4.7.2. Key players
    • 4.7.3. SWOT analysis
  • 4.8. Market forecasts

5. QUANTUM GRAVIMETERS

  • 5.1. Technology overview
  • 5.2. Applications
  • 5.3. Roadmap
  • 5.4. Key players
  • 5.5. Market forecasts
  • 5.6. SWOT analysis

6. QUANTUM GYROSCOPES

  • 6.1. Technology description
    • 6.1.1. Inertial Measurement Units (IMUs)
    • 6.1.2. Atomic quantum gyroscopes
  • 6.2. Applications
  • 6.3. Roadmap
  • 6.4. Key players
  • 6.5. SWOT analysis

7. QUANTUM IMAGE SENSORS

  • 7.1. Technology overview
  • 7.2. Applications
  • 7.3. SWOT analysis
  • 7.4. Market forecast
  • 7.5. Key players

8. QUANTUM RADAR

  • 8.1. Technology overview
  • 8.2. Applications

9. QUANTUM CHEMICAL SENSORS

  • 9.1. Technology overview
  • 9.2. Commercial activities

10. QUANTUM RADIO FREQUENCY FIELD SENSORS

  • 10.1. Overview
  • 10.2. Rydberg Atom Based Electric Field Sensors and Radio Receivers
    • 10.2.1. Principles
    • 10.2.2. Commercialization
  • 10.3. Nitrogen-Vacancy Centre Diamond Electric Field Sensors and Radio Receivers
    • 10.3.1. Principles
    • 10.3.2. Applications
  • 10.4. Market

11. QUANTUM NEMS AND MEMS

  • 11.1. Technology overview
  • 11.2. Types
  • 11.3. Applications
  • 11.4. Challenges

12. CASE STUDIES

  • 12.1. Quantum Sensors in Healthcare: Early Disease Detection
  • 12.2. Military Applications: Enhanced Navigation Systems
  • 12.3. Environmental Monitoring
  • 12.4. Financial Sector: High-Frequency Trading
  • 12.5. Quantum Internet: Secure Communication Networks

13. END-USE INDUSTRIES

  • 13.1. Healthcare and Life Sciences
    • 13.1.1. Medical Imaging
    • 13.1.2. Drug Discovery
    • 13.1.3. Biosensing
  • 13.2. Defense and Military
    • 13.2.1. Navigation Systems
    • 13.2.2. Underwater Detection
    • 13.2.3. Communication Systems
  • 13.3. Environmental Monitoring
    • 13.3.1. Climate Change Research
    • 13.3.2. Geological Surveys
    • 13.3.3. Natural Disaster Prediction
    • 13.3.4. Other Applications
  • 13.4. Oil and Gas
    • 13.4.1. Exploration and Surveying
    • 13.4.2. Pipeline Monitoring
    • 13.4.3. Other Applications
  • 13.5. Transportation and Automotive
    • 13.5.1. Autonomous Vehicles
    • 13.5.2. Aerospace Navigation
    • 13.5.3. Other Applications
  • 13.6. Other Industries
    • 13.6.1. Finance and Banking
    • 13.6.2. Agriculture
    • 13.6.3. Construction
    • 13.6.4. Mining

14. COMPANY PROFILES (57 company profiles)

15. APPENDICES

  • 15.1. Research Methodology
  • 15.2. Glossary of Terms
  • 15.3. List of Abbreviations

16 REFERENCES

List of Tables

  • Table 1. First and second quantum revolutions
  • Table 2. Quantum Sensing Technologies and Applications
  • Table 3. Global government initiatives in quantum technologies
  • Table 4. Quantum technologies industry developments 2020-2025
  • Table 5. Challenges for quantum technologies adoption
  • Table 6. Market Drivers for Quantum Sensors
  • Table 7. Market and technology challenges in quantum sensing
  • Table 8. Technology Trends and Innovations in Quantum Sensors
  • Table 9. Emerging Applications and Use Cases
  • Table 10. Benchmarking of Quantum Sensing Technologies by Type
  • Table 11. Performance Metrics by Application Domain
  • Table 12. Technology Readiness Levels (TRL) and Commercialization Status
  • Table 13. Comparative Performance Metrics
  • Table 14.Current Research and Development Focus Areas
  • Table 15. Potential Disruptive Technologies
  • Table 16. Global market for quantum sensors, by types, 2018-2035 (Millions USD)
  • Table 17. Global market for quantum sensors, by volume (Units), 2018-2035
  • Table 18. Global market for quantum sensors, by sensor price, 2025-2035 (Units)
  • Table 19. Global market for quantum sensors, by end use industry, 2018-2035 (Millions USD)
  • Table 20.Types of Quantum Sensors
  • Table 21. Comparison between classical and quantum sensors
  • Table 22. Applications in quantum sensors
  • Table 23. Technology approaches for enabling quantum sensing
  • Table 24. Value proposition for quantum sensors
  • Table 25. Key challenges and limitations of quartz crystal clocks vs. atomic clocks
  • Table 26. Atomic clocks End users and addressable markets
  • Table 27. Key Market Inflection Points and Technology Transitions
  • Table 28. New modalities being researched to improve the fractional uncertainty of atomic clocks
  • Table 29. Companies developing high-precision quantum time measurement
  • Table 30. Key players in atomic clocks
  • Table 31. Global market for atomic clocks 2025-2035 (Billions USD)
  • Table 32. Comparative analysis of key performance parameters and metrics of magnetic field sensors
  • Table 33. Types of magnetic field sensors
  • Table 34. Market opportunity for different types of quantum magnetic field sensors
  • Table 35. Applications of SQUIDs
  • Table 36. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices)
  • Table 37. Key players in SQUIDs
  • Table 38. Applications of optically pumped magnetometers (OPMs)
  • Table 39. Key players in Optically Pumped Magnetometers (OPMs)
  • Table 40. Applications for TMR (Tunneling Magnetoresistance) sensors
  • Table 41. Market players in TMR (Tunneling Magnetoresistance) sensors
  • Table 42. Applications of N-V center magnetic field centers
  • Table 43. Key players in N-V center magnetic field sensors
  • Table 44. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD)
  • Table 45. Applications of quantum gravimeters
  • Table 46. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping
  • Table 47. Key players in quantum gravimeters
  • Table 48. Global market for Quantum gravimeters 2025-2035 (Millions USD)
  • Table 49. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes
  • Table 50. Markets and applications for quantum gyroscopes
  • Table 51. Key players in quantum gyroscopes
  • Table 52. Types of quantum image sensors and their key features
  • Table 53. Applications of quantum image sensors
  • Table 54. Global market for quantum image sensors 2025-2035 (Millions USD)
  • Table 55. Key players in quantum image sensors
  • Table 56. Comparison of quantum radar versus conventional radar and lidar technologies
  • Table 57. Applications of quantum radar
  • Table 58. Value Proposition of Quantum RF Sensors
  • Table 59. Types of Quantum RF Sensors
  • Table 60. Markets for Quantum RF Sensors
  • Table 61. Technology Transition Milestones
  • Table 62. Application-Specific Adoption Timeline
  • Table 63.Types of Quantum NEMS and MEMS
  • Table 64. Quantum Sensors in Healthcare and Life Sciences
  • Table 65. Quantum Sensors in Defense and Military
  • Table 66. Quantum Sensors in Environmental Monitoring
  • Table 67. Quantum Sensors in Oil and Gas
  • Table 68. Quantum Sensors in Transportation
  • Table 69.Glossary of terms
  • Table 70. List of Abbreviations

List of Figures

  • Figure 1. Quantum computing development timeline
  • Figure 2.Quantum investments 2012-2024 (millions USD)
  • Figure 3. National quantum initiatives and funding
  • Figure 4. Quantum Sensors: Market and Technology Roadmap to 2040
  • Figure 5. Global market for quantum sensors, by types, 2018-2035 (Millions USD)
  • Figure 6. Global market for quantum sensors, by volume, 2018-2035
  • Figure 7. Global market for quantum sensors, by sensor price, 2025-2035 (Units)
  • Figure 8. Global market for quantum sensors, by end use industry, 2018-2035 (Millions USD)
  • Figure 9. Q.ANT quantum particle sensor
  • Figure 10. Current Technological Readiness Levels: Quantum Sensors
  • Figure 11. SWOT analysis for quantum sensors market
  • Figure 12. Atomic clocks market roadmap
  • Figure 13. Strontium lattice optical clock
  • Figure 14. NIST's compact optical clock
  • Figure 15. SWOT analysis for atomic clocks
  • Figure 16. Global market for atomic clocks 2025-2035 (Billions USD)
  • Figure 17. Quantum Magnetometers Market Roadmap
  • Figure 18.Principle of SQUID magnetometer
  • Figure 19. SWOT analysis for SQUIDS
  • Figure 20. SWOT analysis for OPMs
  • Figure 21. Tunneling magnetoresistance mechanism and TMR ratio formats
  • Figure 22. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors
  • Figure 23. SWOT analysis for N-V Center Magnetic Field Sensors
  • Figure 24. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD)
  • Figure 25. Quantum Gravimeter
  • Figure 26. Quantum gravimeters Market roadmap
  • Figure 27. Global market for Quantum gravimeters 2025-2035 (Millions USD)
  • Figure 28. SWOT analysis for Quantum Gravimeters
  • Figure 29. Inertial Quantum Sensors Market roadmap
  • Figure 30. SWOT analysis for Quantum Gyroscopes
  • Figure 31. SWOT analysis for Quantum image sensing
  • Figure 32. Global market for quantum image sensors 2025-2035 (Millions USD)
  • Figure 33. Principle of quantum radar
  • Figure 34. Illustration of a quantum radar prototype
  • Figure 35. Quantum RF Sensors Market Roadmap (2023-2035)
  • Figure 36. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right)
  • Figure 37. SpinMagIC quantum sensor