生物为基础微珠的全球市场(2026年~2036年)
市场调查报告书
商品编码
1740242

生物为基础微珠的全球市场(2026年~2036年)

The Global Market for Biobased Microbeads 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 132 Pages, 76 Tables, 26 Figures | 订单完成后即时交付

价格

生物基微珠市场是庞大的永续材料产业中一个快速发展的领域,其发展动力源于日益严格的环境法规以及消费者对传统塑胶微珠环保替代品的需求。这些微小的球形颗粒直径通常为1-1,000微米,源自可再生生物资源,例如植物纤维素、藻类、农业废弃物和可生物降解聚合物。由于个人护理产品中合成塑胶微珠的使用受到限制,全球生物基微珠市场呈现显着成长。包括美国、加拿大、英国和一些欧盟国家在内的一些国家已实施禁令,禁止在洗面乳中使用塑胶微珠,原因是塑胶微珠具有环境持久性,并可能对海洋生态系统造成伤害。这种监管格局为具有类似功能特性且可生物降解的生物基替代品创造了巨大的机会。

生物基微珠市场涵盖各种天然材料和可生物降解聚合物,每种材料都具有独特的性能和应用潜力。从淀粉、纤维素和几丁质等多醣,到胶原蛋白和酪蛋白等蛋白质,随着聚羟基脂肪酸酯 (PHA) 和聚乳酸 (PLA) 等聚酯的创新,材料领域不断扩展。此外,木质素和海藻酸盐等新材料也为各行各业的特殊应用带来了新的机会。

生物基微珠的主要用途涵盖多个行业,其中个人护理和化妆品是最大的细分市场。这些产品在脸部磨砂膏、沐浴露和牙膏中可作为温和的去角质剂,提供消费者期望的触感和美观特性,同时解决环保问题。除了个人护理之外,生物基微珠还在製药领域用作药物输送系统,在农业领域用作缓释肥料载体,以及在工业过程中用作可生物降解的磨料。

竞争格局由成熟的化学公司和开发新型生物基解决方案的创新新创公司组成。主要参与者包括利用木浆和棉花生产纤维素基微珠的公司,而新技术则专注于转化藻类衍生颗粒和农业废弃物。製造流程通常涉及受控沉淀、喷雾干燥或专门的聚合技术,以达到所需的粒度分布和功能特性。

市场推动因素包括日益严格的环境法规、企业永续发展计画以及消费者对微塑胶污染日益增长的认识。美容和个人护理行业向 "清洁" 配方的转变尤其加速了其应用。此外,技术进步改进了生物基微珠的性能特征,解决了先前对功效和储存稳定性的担忧。

然而,市场面临多重课题。生物基替代品的生产成本通常高于传统塑胶微珠。不过,随着规模和技术的进步,这一差距正在缩小。供应链发展仍然是一个令人担忧的问题,因为持续的投资需要确保原材料的稳定品质和可靠采购。此外,生物降解率和环境归宿仍然是积极研究和监管审查的领域。

区域市场动态差异很大,欧洲在监管压力和市场采用方面均处于领先地位,其次是北美。亚太市场正经历着日益增长的兴趣,尤其是在那些实施严格环境标准的国家。市场结构包括直接取代现有的塑胶微珠,以及利用生物基替代品的独特性能开发新的应用。在不断扩大的监管框架、企业不断增加的环境承诺以及原材料和加工技术的持续创新的支持下,未来市场前景良好。产业分析师预计,在各种应用领域的监管合规性和自愿采用永续替代品的推动下,未来十年市场将保持两位数成长。

本报告提供全球生物为基础微珠市场相关调查分析,提供推动市场要素,技术创新,应用领域,竞争动态等资讯。

目录

第1章 微塑胶市场

  • 被产品添加了的微塑胶
    • 分类
    • 功能与用途
  • 微塑胶相关法律
    • REACH
    • 美国
    • 加拿大
    • 澳洲
    • 亚洲
  • 对环境的影响的评估
    • 海洋污染和微塑胶积累
    • 对海洋生物的毒性作用
    • 对人体健康的影响

第2章 生物为基础微珠材料

  • 微塑胶的替代品的使用
  • 生物分解的机制和时限
  • 天然硬质材料
  • 天然聚合物
    • 多糖类
    • 蛋白质
    • 聚酯
    • 其他的天然聚合物
  • 製造技术和流程
    • 熔融加工、挤出技术
    • 溶剂型生产方法
    • 乳液、喷雾干燥技术
    • 品质控制、粒径分布
  • 法规结构和规格
    • 生物降解性测试标准(ASTM、ISO)
    • 食品接触与化妆品安全法规
    • 国际认证计划

第3章 生物为基础微珠的市场

  • 微塑胶(1~50微米)的替代品:各用途,各市场
  • 天然微塑胶替代品的市场渗透的可能性:各市场
    • 市场渗透的障碍与课题
    • 引进时间轴与市场准备度的评估
  • 个人保养品
    • 市场概要
    • 用途
    • 品牌引进的案例研究
    • 消费者的接受性和支付意愿
    • 微塑胶的总量:各规模(2024年~2036年)
  • 化妆品
    • 市场概要
    • 用途
    • 微塑胶的总量:各规模(2024年~2036年)
  • 农业·园艺
    • 市场概要
    • 用途
    • 微塑胶的总量:各规模(2024年~2036年)
  • 油漆和涂料
    • 市场概要
    • 用途
    • 微塑胶的总量:各规模(2024年~2036年)
  • 肥皂·清洁剂·维修用品
    • 市场概要
    • 用途
    • 微塑胶的总量:各规模(2024年~2036年)
  • 石油、天然气
    • 市场概要
    • 用途
    • 微塑胶的总量:各规模(2024年~2036年)
  • 医疗用品
    • 市场概要
    • 用途
    • 微塑胶的总量:各规模(2024年~2036年)
  • 新用途
    • 3D列印·层积造型
    • 纺织品·纤维
    • 食品包装·生物分解性薄膜
  • 市场金额的分析
  • 价格弹性和成本竞争力的分析

第4章 全球市场规模

  • 一次微粒子(公吨单位的数量)
    • 各市场
    • 各地区
  • 生物为基础微珠(MT)
    • 各原料
    • 各市场
    • 各地区

第5章 SWOT分析与市场课题

  • 生物基微珠的优势
  • 劣势与技术限制
  • 市场机会与成长动力
  • 威胁与市场风险
  • 市场关键成功因素渗透率

第6章 製造商简介(企业40公司的简介)

第7章 报告的调查手法

第8章 参考文献

The market for biobased microbeads represents a rapidly evolving segment within the broader sustainable materials industry, driven by increasing environmental regulations and consumer demand for eco-friendly alternatives to conventional plastic microbeads. These microscopic spherical particles, typically ranging from 1 to 1000 micrometers in diameter, are derived from renewable biological sources such as plant cellulose, algae, agricultural waste, and biodegradable polymers. The global biobased microbeads market has experienced significant growth following regulatory restrictions on synthetic plastic microbeads in personal care products. Countries including the United States, Canada, the United Kingdom, and several EU nations have implemented bans on plastic microbeads in rinse-off cosmetics due to their environmental persistence and potential harm to marine ecosystems. This regulatory landscape has created substantial opportunities for biobased alternatives that offer similar functional properties while maintaining biodegradability.

The biobased microbeads market encompasses a diverse range of natural materials and biodegradable polymers, each offering unique performance characteristics and application potential. From polysaccharides like starch, cellulose, and chitin to proteins including collagen and casein, the material landscape continues to expand with innovations in polyesters such as polyhydroxyalkanoates (PHA) and polylactic acid (PLA). Additionally, emerging materials like lignin and alginate present new opportunities for specialized applications across industries.

Key applications for biobased microbeads span multiple industries, with personal care and cosmetics representing the largest market segment. These products serve as gentle exfoliants in facial scrubs, body washes, and toothpaste, providing the tactile and aesthetic properties consumers expect while addressing environmental concerns. Beyond personal care, biobased microbeads find applications in pharmaceuticals as drug delivery systems, in agriculture as controlled-release fertilizer carriers, and in industrial processes as biodegradable abrasives.

The competitive landscape features a mix of established chemical companies and innovative startups developing novel biobased solutions. Major players include companies producing cellulose-based microbeads from wood pulp and cotton, while emerging technologies focus on algae-derived particles and agricultural waste conversion. Manufacturing processes typically involve controlled precipitation, spray drying, or specialized polymerization techniques to achieve desired particle size distributions and functional properties.

Market growth drivers include strengthening environmental regulations, corporate sustainability commitments, and growing consumer awareness of microplastic pollution. The beauty and personal care industry's shift toward "clean" formulations has particularly accelerated adoption. Additionally, technological advances have improved the performance characteristics of biobased microbeads, addressing early concerns about effectiveness and shelf stability.

However, the market faces several challenges. Production costs for biobased alternatives typically exceed those of conventional plastic microbeads, though this gap is narrowing with scale and technological improvements. Supply chain development remains a consideration, as consistent quality and reliable sourcing of raw materials require ongoing investment. Additionally, biodegradation rates and environmental fate studies continue to be areas of active research and regulatory scrutiny.

Regional market dynamics vary significantly, with Europe leading in both regulatory pressure and market adoption, followed by North America. Asia-Pacific markets show growing interest, particularly in countries implementing stricter environmental standards. The market structure includes both direct replacement of existing plastic microbeads and development of new applications leveraging unique properties of biobased alternatives. Future market prospects appear robust, supported by expanding regulatory frameworks, increasing corporate environmental commitments, and continued innovation in raw materials and processing technologies. Industry analysts project sustained double-digit growth rates through the next decade, with market expansion driven by both regulatory compliance and voluntary adoption of sustainable alternatives across diverse applications.

"The Global Market for Biobased Microbeads: Market Report 2026-2036" provides critical insights into the rapidly evolving landscape of biobased microbeads from 2026 to 2036, analyzing market drivers, technological innovations, application segments, and competitive dynamics across multiple industries. Market segmentation analysis reveals significant opportunities across multiple application areas, with personal care and cosmetics leading adoption rates due to regulatory pressure and consumer demand. The agricultural and horticultural sectors present substantial growth potential for controlled-release applications, while paints and coatings, soap and detergents, oil and gas, and medical products offer diverse market entry points. Emerging applications in 3D printing, textiles, and food packaging represent future growth vectors for innovative market participants.

Manufacturing technologies and processes continue to evolve, with advances in melt processing, extrusion techniques, solvent-based production methods, and emulsion and spray-drying technologies enabling improved quality control and particle size distribution. These technological developments directly impact cost competitiveness and market penetration potential across various application segments.

Report contents include:

  • Regulatory Landscape Analysis: Comprehensive examination of microplastics legislation across major markets including REACH compliance, US federal regulations, Canadian restrictions, Australian guidelines, and emerging Asian regulatory frameworks
  • Material Technology Assessment: Detailed evaluation of natural hard materials, polysaccharides (starch, cellulose variants, chitin), proteins (collagen, gelatin, casein), polyesters (PHA, PLA), and other natural polymers (lignin, alginate)
  • Manufacturing Process Innovation: Analysis of melt processing, extrusion techniques, solvent-based production, emulsion technologies, spray-drying methods, and quality control systems
  • Market Penetration Barriers: Identification of technical limitations, cost competitiveness challenges, supply chain constraints, and regulatory compliance requirements
  • Application Market Sizing: Quantitative analysis of microplastics volumes across personal care (2024-2036), cosmetics, agriculture and horticulture, paints and coatings, soap and detergents, oil and gas, and medical products
  • Regional Market Dynamics: Geographic analysis covering North America, Europe, Asia-Pacific, and emerging markets with volume projections in metric tons
  • Competitive Intelligence: Comprehensive profiles of 40+ leading companies developing biobased microbead technologies and commercial solutions. Companies profiled include
  • Environmental Impact Assessment: Analysis of marine pollution mitigation, toxicological effects reduction, and human health implications
  • Price Elasticity and Cost Analysis: Economic modeling of market adoption rates, price sensitivity, and cost-competitiveness factors
  • Technology Readiness Assessment: Evaluation of commercialization timelines, market readiness levels, and adoption barriers across different application segments
  • SWOT Analysis Framework: Systematic assessment of market strengths, weaknesses, opportunities, and threats affecting industry development
  • Emerging Applications: Forward-looking analysis of 3D printing, textile applications, and food packaging opportunities

TABLE OF CONTENTS

1. THE MICROPLASTICS MARKET

  • 1.1. Microplastics added to products
    • 1.1.1. Classification
    • 1.1.2. Function and applications
  • 1.2. Microplastics legislation
    • 1.2.1. REACH
    • 1.2.2. United States
    • 1.2.3. Canada
    • 1.2.4. Australia
    • 1.2.5. Asia
  • 1.3. Environmental Impact Assessment
    • 1.3.1. Marine pollution and microplastic accumulation
    • 1.3.2. Toxicological effects on marine life
    • 1.3.3. Human health implications

2. BIOBASED MICROBEADS MATERIALS

  • 2.1. Use as an alternative to microplastics
  • 2.2. Biodegradation mechanisms and timeframes
  • 2.3. Natural hard materials
  • 2.4. Natural polymers
    • 2.4.1. Polysaccharides
      • 2.4.1.1. Starch
        • 2.4.1.1.1. Applications and commercial status
        • 2.4.1.1.2. Companies
      • 2.4.1.2. Cellulose
        • 2.4.1.2.1. Microcrystalline cellulose (MCC)
          • 2.4.1.2.1.1. Applications and commercial status
          • 2.4.1.2.1.2. Companies
        • 2.4.1.2.2. Regenerated cellulose microspheres
          • 2.4.1.2.2.1. Applications and commercial status
          • 2.4.1.2.2.2. Companies
        • 2.4.1.2.3. Cellulose nanocrystals
          • 2.4.1.2.3.1. Applications and commercial status
          • 2.4.1.2.3.2. Companies
        • 2.4.1.2.4. Bacterial nanocellulose (BNC)
          • 2.4.1.2.4.1. Applications and commercial status
          • 2.4.1.2.4.2. Companies
      • 2.4.1.3. Chitin
        • 2.4.1.3.1. Applications and commercial status
        • 2.4.1.3.2. Companies
    • 2.4.2. Proteins
      • 2.4.2.1. Collagen/Gelatin
        • 2.4.2.1.1. Applications and commercial status
      • 2.4.2.2. Casein
        • 2.4.2.2.1. Applications and commercial status
    • 2.4.3. Polyesters
      • 2.4.3.1. Polyhydroxyalkanoates
        • 2.4.3.1.1. Applications and commercial status
        • 2.4.3.1.2. Companies
      • 2.4.3.2. Polylactic acid
        • 2.4.3.2.1. Applications and commercial status
        • 2.4.3.2.2. Companies
    • 2.4.4. Other natural polymers
      • 2.4.4.1. Lignin
        • 2.4.4.1.1. Description
        • 2.4.4.1.2. Applications and commercial status
        • 2.4.4.1.3. Companies
      • 2.4.4.2. Alginate
        • 2.4.4.2.1. Applications and commercial status
        • 2.4.4.2.2. Companies
  • 2.5. Manufacturing Technologies and Processes
    • 2.5.1. Melt processing and extrusion techniques
    • 2.5.2. Solvent-based production methods
    • 2.5.3. Emulsion and spray-drying technologies
    • 2.5.4. Quality control and particle size distribution
  • 2.6. Regulatory Framework and Standards
    • 2.6.1. Biodegradability testing standards (ASTM, ISO)
    • 2.6.2. Food contact and cosmetic safety regulations
    • 2.6.3. International certification programs

3. MARKETS FOR BIOBASED MICROBEADS

  • 3.1. Alternatives to microplastics (1-50 micrometer), by application and market
  • 3.2. Likelihood of market penetration of natural microplastic alternatives, by market
    • 3.2.1. Market penetration barriers and challenges
    • 3.2.2. Adoption timeline and market readiness assessment
  • 3.3. Personal care
    • 3.3.1. Market overview
    • 3.3.2. Applications
    • 3.3.3. Brand adoption case studies
      • 3.3.3.1. Unilever
      • 3.3.3.2. L'Oreal
      • 3.3.3.3. Procter & Gamble
    • 3.3.4. Consumer acceptance and willingness to pay
    • 3.3.5. Total quantity of microplastics present 2024-2036 (MT), by scale
  • 3.4. Cosmetics
    • 3.4.1. Market overview
    • 3.4.2. Applications
    • 3.4.3. Total quantity of microplastics present 2024-2036, by scale
  • 3.5. Agriculture and horticulture
    • 3.5.1. Market overview
    • 3.5.2. Applications
    • 3.5.3. Total quantity of microplastics present 2024-2036 (MT), by scale
  • 3.6. Paints & coatings
    • 3.6.1. Market overview
    • 3.6.2. Applications
    • 3.6.3. Total quantity of microplastics present 2024-2036 (MT), by scale
  • 3.7. Soap, detergents and maintenance products
    • 3.7.1. Market overview
    • 3.7.2. Applications
    • 3.7.3. Total quantity of microplastics present 2024-2036 (MT), by scale
  • 3.8. Oil and gas
    • 3.8.1. Market overview
    • 3.8.2. Applications
    • 3.8.3. Total quantity of microplastics present 2024-2036 (MT), by scale
  • 3.9. Medical products
    • 3.9.1. Market overview
    • 3.9.2. Applications
    • 3.9.3. Total quantity of microplastics present 2024-2036 (MT), by scale
  • 3.10. Emerging Applications
    • 3.10.1. 3D printing and additive manufacturing
    • 3.10.2. Textile and fibre
    • 3.10.3. Food packaging and biodegradable films
  • 3.11. Market value analysis
  • 3.12. Price elasticity and cost-competitiveness analysis

4. GLOBAL MARKET SIZE

  • 4.1. Primary microparticles (volume in Metric Tons)
    • 4.1.1. By Market
    • 4.1.2. By Region
  • 4.2. Biobased microbeads (MT)
    • 4.2.1. By Raw Materials
    • 4.2.2. By Market
    • 4.2.3. By Region

5. SWOT ANALYSIS AND MARKET CHALLENGES

  • 5.1. Strengths of biobased microbeads
  • 5.2. Weaknesses and technical limitations
  • 5.3. Market opportunities and growth drivers
  • 5.4. Threats and market risks
  • 5.5. Critical success factors for market penetration

6. PRODUCER PROFILES (40 company profiles)

7. REPORT METHODOLOGY

8. REFERENCES

List of Tables

  • Table 1. Summary of functions and applications for microplastics
  • Table 2. Global Microplastics Legislation
  • Table 3. Microplastics environmental impact assessment
  • Table 4. Biodegradable polymers
  • Table 5. Biodegradation mechanisms and timeframes
  • Table 6. Performance comparison vs. conventional microplastics
  • Table 7.Companies developing starch microspheres/microbeads
  • Table 8. Companies developing microcrystalline cellulose (MCC) spheres/beads
  • Table 9. Companies developing cellulose microbeads
  • Table 10. CNC properties
  • Table 11. Applications of cellulose nanocrystals (NCC)
  • Table 12. Companies developing cellulose nanocrystal microbeads
  • Table 13. Cellulose nanocrystal production capacities and production process, by producer
  • Table 14. Applications of bacterial nanocellulose (BNC)
  • Table 15. Companies developing bacterial nanocellulose microbeads
  • Table 16.Companies developing chitin microspheres/microbeads
  • Table 17.Types of PHAs and properties
  • Table 18. Polyhydroxyalkanoates (PHA) producers
  • Table 19. Companies developing PHA for microbeads
  • Table 20. PLA producers and production capacities
  • Table 21. Technical lignin types and applications
  • Table 22. Properties of lignins and their applications
  • Table 23. Production capacities of technical lignin producers
  • Table 24. Production capacities of biorefinery lignin producers
  • Table 25. Companies developing lignin for microbeads (current or potential applications)
  • Table 26. Companies developing alginate for microbeads (current or potential applications)
  • Table 27. Manufacturing Technologies and Processes for Biobased Microbeads
  • Table 28. Biodegradability Testing Standards (ASTM, ISO)
  • Table 29. Food Contact and Cosmetic Safety Regulations
  • Table 30. International Certification Programs
  • Table 31. Alternatives to microplastics (1-50 micrometer) by application and market
  • Table 32. Likelihood of market penetration of natural microplastic alternatives, by main markets
  • Table 33. Market penetration barriers and challenges
  • Table 34. Personal care products containing primary microplastics
  • Table 35. Alternative Microplastic Materials in Personal Care
  • Table 36. Total quantity of microplastics present in personal care products 2024-2036 (MT), by scale
  • Table 37. Types of Microplastics in Cosmetics
  • Table 38. Alternative Microplastic Materials in Cosmetics
  • Table 39. Total quantity of microplastics present in cosmetics 2024-2036 (MT), by scale
  • Table 40. Types of Microplastics in Agriculture and Horticulture
  • Table 41. Agriculture and horticulture products containing microplastics
  • Table 42. Alternative Microplastic Materials in Agriculture and Horticulture
  • Table 43. Total quantity of microplastics present in agriculture and horticulture 2024-2036 (MT), by scale
  • Table 44. Types of Microplastics in Paints and Coatings
  • Table 45. Alternative Microplastic Materials in Paints and Coatings
  • Table 46. Total quantity of microplastics present in paints and coatings 2024-2036 (MT), by scale
  • Table 47. Soaps, detergents and maintenance products containing microplastics
  • Table 48. Alternative Microplastic Materials in Soap, Detergents, and Maintenance Products
  • Table 49. Total quantity of microplastics present in Soaps, detergents and maintenance products 2024-2036 (MT), by scale
  • Table 50. Types of Microplastics in Oil and Gas
  • Table 51. Alternative Microplastic Materials in Oil and Gas
  • Table 52. Total quantity of microplastics present in oil and gas 2024-2036 (MT), by scale
  • Table 53. Example microsphere products in drug delivery
  • Table 54. Medical products containing microplastics
  • Table 55. Alternative Microplastic Materials in Medical Products
  • Table 56. Total quantity of microplastics present in medicinal products 2024-2036 (MT), by scale
  • Table 57. Biobased Microbeads in Emerging Applications
  • Table 58. Biobased microbeads in 3D printing and additive manufacturing
  • Table 59. Biobased microbeads in Textile and fibre applications
  • Table 60. Biobased microbeads in Food packaging and biodegradable films
  • Table 61. Market Value Analysis - Biobased Microbeads Global Market ($USD Million)
  • Table 62. Price elasticity and cost-competitiveness analysis
  • Table 63. Global market for primary microparticles 2017-2024, by Market, (Metric Tons)
  • Table 64. Global Market for Primary Microparticles 2025-2036, by Market (Metric Tons)
  • Table 65. Global Market Size by Region 2017-2024, Primary Microparticles (Metric Tons)
  • Table 66. Global market for primary microparticles 2025-2036, by region, (Metric Tons)
  • Table 67. Market Segmentation by Raw Materials (2025 Projections)
  • Table 68. Global market 2017-2036, for biobased microbeads, (MT)
  • Table 69. Global Market 2017-2036, for Biobased Microbeads, by Market (MT)
  • Table 70. Global market 2017-2036, for biobased microbeads, by region (MT)
  • Table 71. Strengths of biobased microbeads
  • Table 72. Weaknesses and technical limitations
  • Table 73. Biobased microbeads Market opportunities and growth drivers
  • Table 74. Biobased microbeads Threats and market risks
  • Table 75. Biobased microbeads Critical success factors for market penetration
  • Table 76. Lactips plastic pellets

List of Figures

  • Figure 1. Typical sources of primary microplastics
  • Figure 2. Bacterial nanocellulose shapes
  • Figure 3. Adoption timeline and market readiness assessment
  • Figure 4. Total quantity of microplastics present in personal care products 2024-2036 (MT), by scale
  • Figure 5. Toothpaste incorporating microbeads
  • Figure 6. Total quantity of microplastics present in cosmetics 2024-2036 (MT), by scale
  • Figure 7. Total quantity of microplastics present in agriculture and horticulture 2024-2036 (MT), by scale
  • Figure 8. Total quantity of microplastics present in paints and coatings 2024-2036 (MT), by scale
  • Figure 9. Total quantity of microplastics present in Soaps, detergents and maintenance products 2024-2036 (MT), by scale
  • Figure 10. Total quantity of microplastics present in oil and gas 2024-2036 (MT), by scale
  • Figure 11. Total quantity of microplastics present in medicinal products 2024-2036 (MT), by scale
  • Figure 12. Global market for primary microparticles 2017-2024, by Market, (Metric Tons)
  • Figure 13. Global market for primary microparticles 2024-2036, by Market, (Metric Tons)
  • Figure 14. Global market size by region 2020-2024, primary microparticles, (Metric Tons)
  • Figure 15. Global market for primary microparticles 2025-2036, by region, (Metric Tons)
  • Figure 16. Global market 2017-2036, for biobased microbeads, (MT)
  • Figure 17. Global market 2017-2036, for biobased microbeads, by market (MT)
  • Figure 18. Global market 2017-2036, for biobased microbeads, by region (MT)
  • Figure 19: CNC produced at Tech Futures' pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:
  • Figure 20: NCCTM Process
  • Figure 21. Pressurized Hot Water Extraction
  • Figure 22. BELLOCEA(TM)
  • Figure 23. VIVAPUR-R MCC Spheres
  • Figure 24. Viscopearl-R
  • Figure 25. Supramolecular plastic that dissolves in seawater
  • Figure 26. The Proesa-R Process