产业用酵素的全球市场(2026年~2036年)
市场调查报告书
商品编码
1808073

产业用酵素的全球市场(2026年~2036年)

The Global Industrial Enzymes Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 150 Pages, 36 Tables, 9 Figures | 订单完成后即时交付

价格

全球工业酵素市场是生物技术产业中最具活力且发展最快的领域之一,其驱动力源于对永续生产流程、环境法规以及酵素工程技术突破的日益增长的需求。这些生物催化剂主要透过利用基因改造微生物的先进发酵技术生产,已成为实现绿色化学目标的重要工具,同时在各种工业应用中保持经济竞争力。市场扩张在代表酵素商业化下一个前沿的新兴应用领域尤为显着,例如生物燃料生产、塑胶废物回收和二氧化碳利用。

食品和饮料加工是最大的应用领域,约占全球市场的23%,这得益于消费者对天然成分、清洁标籤产品和强化营养成分需求的不断增长。洗涤剂产业占第二大市场,占20%,受益于日益增强的环保意识以及减少家用和工业清洁剂中化学品使用的监管压力。生物燃料生产目前仅占10%的市场占有率,但拥有最高的成长潜力,预计随着全球再生能源法规的加强,该领域将大幅扩张。

动物饲料应用是关键推动因素,其驱动力来自全球蛋白质消费量的上升、抗生素生长促进剂的监管限制以及人们对可持续畜牧业实践日益增长的认识。纺织加工酶可实现环保的替代製造方法,从而减少用水量并消除织物前处理和整理过程中传统上使用的刺激性化学物质。随着技术进步和监管框架的演变,製药、废弃物管理和农业集约化领域的新应用代表着重要的长期机会。

人工智慧、机器学习和生物技术的融合彻底改变了酶的开发,显着缩短了发现时间,同时扩展了可实现的酶特性范围。蛋白质工程的进展也使得稳定性、活性和底物特异性的最佳化成为可能。无细胞酶生产系统和替代表达宿主(包括基于植物的平台)代表具有改变製造业经济潜力的新兴技术。

工业酵素市场处于永续工业转型的前沿,它使製造商能够降低能源消耗、消除危险化学品并最大限度地减少废物产生,同时保持产品品质和经济竞争力。日益增长的环保监管压力和消费者对永续产品的需求,使得酵素成为几乎所有工业领域绿色製造的关键。工业酵素市场的持续扩张不仅反映了技术进步,也反映了向永续发展驱动的商业模式和循环经济原则的根本性转变,这些转变将塑造未来几十年的工业发展。

本报告分析了全球工业酵素市场,提供了市场规模和成长预测、酵素类型比较、技术路线图以及76家主要公司的概况。

目录

第1章 摘要整理

  • 概要
  • 生物製造酵素
  • 酵素的类型的比较
  • 科技蓝图

第2章 技术分析

  • 洗涤剂用酶
  • 食品加工用酶
  • 纺织加工用酶
  • 纸张与纸浆加工用酶
  • 皮革加工用酶
  • 生质燃料生产用酶
  • 动物饲料用酶
  • 製药和诊断用酶
  • 废弃物管理与生物修復用酶
  • 农业和作物改良用酶
  • 脱碳和二氧化碳排放用酵素利用率

第3章 市场分析

  • 主要公司及竞争格局
  • 市场成长因素及趋势
  • 工业酵素的技术课题与机会
  • 酵素加工的经济竞争力
  • 法规
  • 价值链
  • 未来展望
  • 技术成熟度 (TRL)
  • 潜在市场规模
  • 风险与机遇
  • 全球收入

第4章 企业简介(76家企业的简介)

第5章 参考文献

The global industrial enzymes market represents one of the most dynamic and rapidly expanding sectors within the broader biotechnology industry, driven by increasing demand for sustainable manufacturing processes, environmental regulations, and technological breakthroughs in enzyme engineering. These biological catalysts, primarily produced through advanced fermentation technologies using genetically modified microorganisms, have become indispensable tools for achieving green chemistry objectives while maintaining economic competitiveness across diverse industrial applications. The market's expansion is particularly pronounced in emerging applications including biofuels production, plastic waste recycling, and carbon dioxide utilization, which collectively represent the next frontier of enzyme commercialization.

Food and beverage processing constitutes the largest application segment, accounting for approximately 23% of the global market, driven by increasing consumer demand for natural ingredients, clean-label products, and enhanced nutritional profiles. The detergent industry represents the second-largest segment at 20%, benefiting from growing environmental consciousness and regulatory pressure to reduce chemical usage in household and industrial cleaning products. Biofuels production, while currently smaller at 10% market share, demonstrates the highest growth potential with projections indicating substantial expansion as renewable energy mandates strengthen globally.

Animal feed applications represent a critical growth driver, supported by increasing global protein consumption, regulatory restrictions on antibiotic growth promoters, and growing awareness of sustainable livestock production practices. Textile processing enzymes enable eco-friendly manufacturing alternatives that reduce water consumption and eliminate harsh chemicals traditionally used in fabric preparation and finishing. Emerging applications in pharmaceutical manufacturing, waste management, and agricultural enhancement represent significant long-term opportunities as technology development progresses and regulatory frameworks evolve.

The convergence of artificial intelligence, machine learning, and biotechnology has revolutionized enzyme development, dramatically reducing discovery timelines while expanding the range of achievable enzyme properties. Directed evolution techniques combined with computational design enable creation of highly specialized enzymes for specific industrial challenges, while advances in protein engineering allow optimization of stability, activity, and substrate specificity. Cell-free enzyme production systems and alternative expression hosts including plant-based platforms represent emerging technologies with potential to transform manufacturing economics.

The industrial enzymes market stands at the forefront of sustainable industrial transformation, enabling manufacturers to reduce energy consumption, eliminate hazardous chemicals, and minimize waste generation while maintaining product quality and economic competitiveness. Growing regulatory pressure for environmental protection, combined with consumer demand for sustainable products, positions enzymes as essential enablers of green manufacturing across virtually all industrial sectors. The market's continued expansion reflects not only technological advancement but also fundamental shifts toward sustainability-driven business models and circular economy principles that will define industrial development in the coming decades.

"The Global Industrial Enzymes Market 2026-2036" provides an in-depth analysis of the industrial enzymes market from 2026-2036, examining the dynamic landscape of biological catalysts that are revolutionizing manufacturing processes worldwide. As industries increasingly prioritize environmental sustainability, cost efficiency, and regulatory compliance, industrial enzymes have emerged as critical enablers of green chemistry and circular economy principles. This report examines the complex ecosystem of industrial enzyme applications, from established markets including food processing and detergents to emerging applications in waste management, agriculture, and carbon capture technologies. The analysis encompasses detailed market segmentation by application areas, geographic regions, technology platforms, production hosts, and enzyme stability characteristics, providing stakeholders with comprehensive insights into market dynamics and growth opportunities.

The competitive landscape features a mix of established multinational corporations and innovative biotechnology companies developing next-generation enzyme solutions. Market leaders leverage extensive R&D capabilities, global distribution networks, and strategic partnerships to maintain competitive advantages, while emerging companies focus on specialized applications and breakthrough technologies that address specific industrial challenges.

Report contents include:

  • Market Overview: Comprehensive analysis of global industrial enzymes market size, growth projections, and key success factors
  • Bio-manufactured Enzymes: Advanced production technologies and fermentation platforms driving commercial enzyme development
  • Enzyme Types Comparison: Detailed evaluation of different enzyme categories, applications, and performance characteristics
  • Technology Roadmap: Strategic technology development timeline and innovation priorities across enzyme sector
  • Technology Analysis
    • Detergent Enzymes: Complete analysis of proteases, amylases, lipases, cellulases, mannanases, pectate lyases, and peroxidases for cleaning applications
    • Food Processing Enzymes: Comprehensive coverage of amylases, proteases, lipases, pectinases, lactase, transglutaminase, glucose oxidase, xylanases, invertase, and chymosin
    • Textile Processing Enzymes: Detailed examination of cellulases, amylases, catalases, laccases, pectinases, proteases, lipases, peroxidases, and xylanases for sustainable textile manufacturing
    • Paper and Pulp Processing: Analysis of xylanases, cellulases, lipases, laccases, amylases, pectinases, proteases, ligninases, mannanases, and esterases
    • Leather Processing: Coverage of proteases, lipases, amylases, cellulases, laccases, keratinases, pectinases, catalases, and tannases
    • Biofuel Production: Lignocellulosic bioethanol enzymes, cellulases, hemicellulases, thermostable enzymes, and cost-performance metrics
    • Animal Feed Enzymes: Phytases, xylanases, beta-glucanases, proteases, amylases, cellulases, lipases, mannanases, alpha-galactosidases, and pectinases
    • Pharmaceutical and Diagnostic: Restriction endonucleases, DNA ligases, polymerases, reverse transcriptases, proteases, glucose oxidase, cholesterol oxidase, luciferases, alkaline phosphatases, and horseradish peroxidase
    • Waste Management and Bioremediation: Plastic recycling enzymes, enzymatic depolymerization technologies, and implementation challenges
    • Agriculture and Crop Improvement: Cellulases, chitinases, beta-glucanases, phytases, xylanases, proteases, ligninases, phosphatases, nitrogenases, and peroxidases
    • Decarbonization and CO2 Utilization: Carbonic anhydrase, formate dehydrogenase, and innovative enzymatic approaches for carbon capture and conversion
  • Market Analysis
    • Competitive Landscape: Key market players, strategic positioning, and industry consolidation trends
    • Growth Drivers and Market Trends: Primary factors driving market expansion and emerging application opportunities
    • Technology Challenges and Opportunities: Technical barriers, innovation priorities, and breakthrough potential
    • Economic Competitiveness: Cost analysis, value propositions, and competitive positioning versus chemical alternatives
    • Regulatory Framework: Global regulatory landscape, approval processes, and compliance requirements
    • Value Chain Analysis: Supply chain dynamics, distribution channels, and market access strategies
    • Future Outlook: Long-term market projections, emerging technologies, and industry transformation trends
    • Technology Readiness Levels: Development status and commercial viability across enzyme categories
    • Addressable Market Size: Market sizing methodology, growth projections, and segment analysis
    • Risk and Opportunity Assessment: Market risks, competitive threats, and strategic opportunities
    • Global Revenue Analysis: Comprehensive revenue projections by application markets, regional markets, technology platforms, production hosts, and enzyme stability characteristics
  • Company Profiles of 76 leading companies across the industrial enzymes value chain, including established market leaders and innovative emerging companies: Agrivida, Allozymes, Amano Enzyme Inc., Ansa Biotechnologies, Aralez Bio, Arzeda, BASF, Biocatalysts Ltd., BioBetter, Bio Fab NZ, BioMap, Biomatter, Biosyntia, bitBiome, Cambrium GmbH, Carbios, Cascade Biocatalysts Inc., ChiralVision B.V., CinderBio, Codexis, Constructive Bio, Debut Biotechnology, Diffuse Bio, DNA Script, DSM-Firmenich, DuPont, Dyadic International, Eco Fuel Technology Inc., EnginZyme AB, EnPlusOne Biosciences, Enzyan Biocatalysis GmbH, Enzymaster, Enzyme Development Corporation, Enzymit, Enzymatic Deinking Technologies, Enzymicals AG, Epoch Biodesign, Etcembly, Eversyn, FabricNano, Futurity Bio-Ventures Ltd., Fermbox Bio, Fermentalg, Fooditive Group, Formo Bio, Gen3Bio, Ginkgo Bioworks, Global Bioenergies SA, Honext Material SL, HydGene Renewables, Imperagen Limited and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Overview
  • 1.2. Bio-manufactured enzymes
  • 1.3. Comparison of enzyme types
  • 1.4. Technology Roadmap

2. TECHNOLOGY ANALYSIS

  • 2.1. Detergent Enzymes
    • 2.1.1. Proteases
    • 2.1.2. Amylases
    • 2.1.3. Lipases
    • 2.1.4. Cellulases
    • 2.1.5. Mannanases
    • 2.1.6. Pectate Lyases
    • 2.1.7. Peroxidases
  • 2.2. Food Processing Enzymes
    • 2.2.1. Amylases
    • 2.2.2. Proteases
    • 2.2.3. Lipases
    • 2.2.4. Pectinases
    • 2.2.5. Lactase
    • 2.2.6. Transglutaminase
    • 2.2.7. Glucose Oxidase
    • 2.2.8. Xylanases
    • 2.2.9. Invertase
    • 2.2.10. Chymosin
  • 2.3. Textile Processing Enzymes
    • 2.3.1. Cellulases
    • 2.3.2. Amylases
    • 2.3.3. Catalases
    • 2.3.4. Laccases
    • 2.3.5. Pectinases
    • 2.3.6. Proteases
    • 2.3.7. Lipases
    • 2.3.8. Peroxidases
    • 2.3.9. Xylanases
  • 2.4. Paper and Pulp Processing Enzymes
    • 2.4.1. Xylanases
    • 2.4.2. Cellulases
    • 2.4.3. Lipases
    • 2.4.4. Laccases
    • 2.4.5. Amylases
    • 2.4.6. Pectinases
    • 2.4.7. Proteases
    • 2.4.8. Ligninases
    • 2.4.9. Mannanases
    • 2.4.10. Esterases
  • 2.5. Leather Processing Enzymes
    • 2.5.1. Proteases
    • 2.5.2. Lipases
    • 2.5.3. Amylases
    • 2.5.4. Cellulases
    • 2.5.5. Laccases
    • 2.5.6. Keratinases
    • 2.5.7. Pectinases
    • 2.5.8. Catalases
    • 2.5.9. Tannases
  • 2.6. Biofuel Production Enzymes
    • 2.6.1. Enzymes for lignocellulosic derived bioethanol
    • 2.6.2. Cellulases for lignocellulosic bioethanol
    • 2.6.3. Hemicellulases and synergistic enzyme cocktails
    • 2.6.4. Thermostable and extremophilic enzymes
    • 2.6.5. Cost-performance metrics for thermostable enzymes
  • 2.7. Animal Feed Enzymes
    • 2.7.1. Phytases
    • 2.7.2. Xylanases
    • 2.7.3. Beta-Glucanases
    • 2.7.4. Proteases
    • 2.7.5. Amylases
    • 2.7.6. Cellulases
    • 2.7.7. Lipases
    • 2.7.8. Mannanases
    • 2.7.9. Alpha-Galactosidases
    • 2.7.10. Pectinases
  • 2.8. Pharmaceutical and Diagnostic Enzymes
    • 2.8.1. Restriction Endonucleases
    • 2.8.2. DNA Ligases
    • 2.8.3. Polymerases
    • 2.8.4. Reverse Transcriptases
    • 2.8.5. Proteases
    • 2.8.6. Glucose Oxidase
    • 2.8.7. Cholesterol Oxidase
    • 2.8.8. Luciferases
    • 2.8.9. Alkaline Phosphatases
    • 2.8.10. Horseradish Peroxidase
  • 2.9. Waste Management and Bioremediation Enzymes
    • 2.9.1. Enzymes for plastics recycling
    • 2.9.2. Enzymatic depolymerization
    • 2.9.3. Challenges in enzymatic depolymerization
  • 2.10. Agriculture and Crop Improvement Enzymes
    • 2.10.1. Cellulases
    • 2.10.2. Chitinases
    • 2.10.3. beta-Glucanases
    • 2.10.4. Phytases
    • 2.10.5. Xylanases
    • 2.10.6. Proteases
    • 2.10.7. Ligninases
    • 2.10.8. Phosphatases
    • 2.10.9. Nitrogenases
    • 2.10.10. Peroxidases
  • 2.11. Enzymes for Decarbonization and CO2 Utilization
    • 2.11.1. Carbonic anhydrase in CO2 capture technologies
    • 2.11.2. Formate dehydrogenase and CO2-to-chemicals pathways
    • 2.11.3. Selected enzymatic approaches to CO2 capture and conversion

3. MARKET ANALYSIS

  • 3.1. Key players and competitive landscape
  • 3.2. Market Growth Drivers and Trends
  • 3.3. Technology challenges and opportunities for industrial enzymes
  • 3.4. Economic competitiveness of enzymatic processing
  • 3.5. Regulations
  • 3.6. Value chain
  • 3.7. Future outlook
  • 3.8. Technology Readiness Level (TRL)
  • 3.9. Addressable Market Size
  • 3.10. Risks and Opportunities
  • 3.11. Global revenues
    • 3.11.1. By Application Market
    • 3.11.2. By Regional Market
    • 3.11.3. By Technology Platform
    • 3.11.4. By Production Host
    • 3.11.5. By Enzyme Stability/Temperature Range

4. COMPANY PROFILES (76 company profiles)

5. REFERENCES

List of Tables

  • Table 1. Types of industrial enzymes
  • Table 2. Comparison of enzyme types
  • Table 3. Types of Detergent Enzymes
  • Table 4. Types of Food Processing Enzymes
  • Table 5. Types of Textile Processing Enzymes
  • Table 6. Types of Paper and Pulp Processing Enzymes
  • Table 7. Types of Leather Processing Enzymes
  • Table 8. Types of Biofuel Production Enzymes
  • Table 9. Lignocellulosic Enzyme Systems and Performance
  • Table 10. Cellulase Component Functions and Characteristics
  • Table 11. Hemicellulase Systems and Substrate Specificity
  • Table 12. Thermostable Enzyme Sources and Characteristics
  • Table 13. Thermostable Enzyme Economic Analysis Framework
  • Table 14. Types of Animal Feed Enzymes
  • Table 15. Types of Pharmaceutical and Diagnostic Enzymes
  • Table 16. Types of Waste Management and Bioremediation Enzymes
  • Table 17. Enzymes for Plastics Recycling Applications
  • Table 18. Challenges in Enzymatic Depolymerization
  • Table 19. Types of Agriculture and Crop Improvement Enzymes
  • Table 20. Enzymes for Decarbonization and CO2 Utilization
  • Table 21. Carbonic Anhydrase Applications in CO2 Capture
  • Table 22. Formate Dehydrogenase Systems for CO2 Conversion
  • Table 23. Enzymatic CO2 Capture and Conversion Technologies
  • Table 24. Key players in industrial enzymes
  • Table 25. Market Growth Drivers and Trends in industrial enzymes
  • Table 26. Technology Challenges and Opportunities for Industrial Enzymes
  • Table 27. Industrial enzymes Regulations
  • Table 28. Value chain: Industrial enzymes
  • Table 29. Technology Readiness Level (TRL): Biocatalysts
  • Table 30. Addressable market size for industrial enzymes
  • Table 31. Risks and Opportunities in industrial enzymes
  • Table 32. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD
  • Table 33. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD
  • Table 34. Global revenues for industrial enzymes, By Technology Platform (2020-2036), billions USD
  • Table 35. Global revenues for industrial enzymes, By Production Host (2020-2036), billions USD
  • Table 36. Global revenues for industrial enzymes, By Enzyme Stability/Temperature Range (2020-2036), billions USD

List of Figures

  • Figure 1. Technology Roadmap for Industrial Enzymes (Biocatalysts)
  • Figure 2. Addressable market size for industrial enzymes
  • Figure 3. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD
  • Figure 4. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD
  • Figure 5. Global revenues for industrial enzymes, By Technology Platform (2020-2036), billions USD
  • Figure 6. Global revenues for industrial enzymes, By Production Host (2020-2036), billions USD
  • Figure 7. Global revenues for industrial enzymes, By Enzyme Stability/Temperature Range (2020-2036), billions USD
  • Figure 8. Light Bio Bioluminescent plants
  • Figure 9. Corbion FDCA production process