重要材料回收的全球市场(2026年~2046年)
市场调查报告书
商品编码
1811145

重要材料回收的全球市场(2026年~2046年)

The Global Critical Materials Recovery Market 2026-2046

出版日期: | 出版商: Future Markets, Inc. | 英文 358 Pages, 118 Tables, 55 Figures | 订单完成后即时交付

价格

关键材料回收市场是一个快速发展的行业,专注于从电子垃圾、废弃电池、工业副产品和报废产品等二次资源中提取有价值的金属和矿物。该市场的兴起是对日益加剧的供应链脆弱性、围绕矿产资源的地缘政治紧张局势以及日益电气化的全球经济中对可持续材料流动的迫切需求的战略性回应。

该市场的主要驱动力是清洁能源技术、电动车和先进电子产品对关键材料日益增长的需求。锂、钴、镍、稀土元素、铂族金属以及镓和铟等半导体材料对于风力涡轮机、太阳能电池板、电动车电池和电子设备至关重要。传统采矿面临资源枯竭、环境问题以及供应链往往集中在一个国家等课题,这使得二次回收越来越具有吸引力。

目前的市场预测显示,到2046年,全球关键材料回收产业将实现显着增长,其中锂离子电池回收预计将在数量和价值方面占主导地位。该市场涵盖多种材料流,其中电池回收占最大占有率,其次是稀土磁体回收、从电子垃圾中提取半导体材料以及从汽车催化剂中回收铂族金属。

回收过程通常分为两个主要阶段:萃取和回收。萃取技术包括湿式冶金、火法冶金、生物冶金以及离子液体和超临界流体萃取等新方法。回收技术包括溶剂萃取、离子交换、电解沉积、沉淀和直接回收。每种方法在效率、环境影响和经济性方面都各有优势和课题。

湿式冶金目前在商业营运中占主导地位,因为它比火法冶金更具多功能性,而且能耗更低。然而,直接回收技术,尤其是电池正极材料和稀土磁体的直接回收技术,因其能够保留材料结构并减少加工步骤而备受关注。

市场可依材料类型、来源及回收方法细分。电池回收主要着重于从废弃电动车 (EV) 和消费性电子产品电池中回收锂、钴、镍和锰。稀土回收的目标是从风力涡轮机和电动马达的永久磁铁中回收钕、镝和铽。半导体回收则从电子垃圾和太阳能板中回收镓、铟、锗和碲。铂族金属回收则专注于汽车催化剂和新兴的氢燃料电池应用。

经济可行性因材料类型和地区而异。铂族金属和稀土等高价值材料通常具有良好的回收经济效益,而锂等低价值材料则需要提高规模和效率。监管架构越来越多地要求回收目标和延伸生产者责任,尤其是在欧洲、中国和北美部分地区。

支持循环经济原则和供应链韧性的政府政策正在加速市场发展。欧盟的 "关键原料法案" 、美国的 "关键矿产倡议" 以及中国的 "回收政策" 正在为支持二次材料回收创造监管动力。

关键课题包括开发回收基础设施、扩大技术规模、与初级生产进行经济竞争以及处理复杂的废物流。许多关键材料在混合废弃物中的浓度较低,需要先进的分离技术,而且通常使回收变得无利可图。到2046年,市场轨迹显示出持续扩张,这得益于废弃物可用性的增加、技术改进和政策支援的推动。随着第一代电动车电池在2030-2035年左右达到使用寿命,电池回收预计将大幅成长。稀土回收可能会受益于日益增长的磁性废物流和供应安全担忧。要在这个市场取得成功,需要平衡技术创新与经济现实,并建立强大的回收和加工基础设施,以最大限度地发挥二次关键材料资源的潜力。

本报告分析了全球关键材料回收市场,提供了有关锂离子电池回收、稀土元素回收、半导体材料提取和铂族金属回收等领域的回收技术、市场预测、监管格局和竞争动态的资讯。

目录

第1章 摘要整理

  • 关键原料的定义与重要性
  • 电子垃圾作为关键原料的来源
  • 电气化、再生能源和清洁技术
  • 监理格局
  • 主要市场驱动因素与限制因素
  • 全球关键原料市场 (2025)
  • 关键材料萃取技术
  • 关键原物料价值链
  • 关键原料回收的经济问题
  • 主要回收材料的价格趋势 (2020-2024)
  • 全球市场预测

第2章 简介

  • 关键原料
  • 全球供应与贸易概况
  • 循环经济
  • 能源转型的关键策略原料
  • 关键材料回收的现有和新兴二次来源
  • 从二次来源回收关键材料的商业模式
  • 加工和提取的金属和矿物
  • 回收来源

第3章 半导体的重要原料的回收

  • 关键半导体材料
  • 电子垃圾
  • 光电技术
  • 电子垃圾中关键原料的浓度与价值
  • 关键原料的用途与重要性
  • 废弃物回收再利用流程
  • 收集和分类基础设施
  • 预处理技术
  • 金属回收技术
  • 全球市场(2025-2046)

第4章 锂离子电池的重要原料的回收

  • 关键锂离子电池金属
  • 关键锂离子电池技术的金属回收
  • 锂离子电池回收价值链
  • 黑色粉末
  • 不同正极材料的回收
  • 製备
  • 预处理
  • 回收技术比较
  • 湿式冶金
  • 火法冶金
  • 直接回收
  • 其他方法
  • 特定部件的回收
  • 非锂离子电池的回收
  • 锂离子电池回收的经济问题
  • 竞争格局
  • 全球产能目前及规划
  • 未来展望
  • 全球市场 (2025-2046)

第5章 重要稀土元素元素的回收

  • 引言
  • 永久磁铁应用
  • 回收技术
  • 从废弃稀土磁铁中回收利用技术
  • 市场
  • 全球市场 (2025-2046)

第6章 重要铂族金属的回收

  • 简介
  • 供应链
  • 价格
  • PGM回收
  • 来自使用后汽车用催化剂的PGM回收
  • 从氢电解器和燃料电池中回收铂族金属
  • 市场
  • 全球市场(2025年~2046年)

第7章 企业简介(166家企业的简介)

第8章 附录

第9章 参考文献

The critical materials recovery market represents a rapidly expanding sector focused on extracting valuable metals and minerals from secondary sources such as electronic waste, spent batteries, industrial by-products, and end-of-life products. This market has emerged as a strategic response to growing supply chain vulnerabilities, geopolitical tensions surrounding mineral resources, and the urgent need for sustainable material flows in an increasingly electrified global economy.

The market is primarily driven by the accelerating demand for critical materials in clean energy technologies, electric vehicles, and advanced electronics. Lithium, cobalt, nickel, rare earth elements, platinum group metals, and semiconductor materials like gallium and indium have become essential for wind turbines, solar panels, EV batteries, and electronic devices. Traditional mining faces mounting challenges including resource depletion, environmental concerns, and concentrated supply chains often controlled by single countries, making secondary recovery increasingly attractive.

Current market forecasts suggest the global critical materials recovery sector will experience substantial growth through 2046, with lithium-ion battery recycling expected to dominate by volume and value. The market encompasses multiple material streams, with battery recycling representing the largest segment, followed by rare earth magnet recovery, semiconductor material extraction from e-waste, and platinum group metal recovery from automotive catalysts.

The recovery process typically involves two main stages: extraction and recovery. Extraction technologies include hydrometallurgy, pyrometallurgy, biometallurgy, and emerging approaches like ionic liquids and supercritical fluid extraction. Recovery technologies encompass solvent extraction, ion exchange, electrowinning, precipitation, and direct recycling methods. Each approach presents distinct advantages and challenges regarding efficiency, environmental impact, and economic viability.

Hydrometallurgical processes currently dominate commercial operations due to their versatility and lower energy requirements compared to pyrometallurgical methods. However, direct recycling technologies are gaining attention for their potential to preserve material structure and reduce processing steps, particularly for battery cathode materials and rare earth magnets.

The market can be segmented by material type, source, and recovery method. Battery recycling focuses primarily on lithium, cobalt, nickel, and manganese recovery from spent EV and consumer electronics batteries. Rare earth recovery targets neodymium, dysprosium, and terbium from permanent magnets in wind turbines and electric motors. Semiconductor recovery addresses gallium, indium, germanium, and tellurium from electronic waste and photovoltaic panels. Platinum group metal recovery concentrates on automotive catalysts and emerging hydrogen fuel cell applications.

Economic viability varies significantly across material types and regions. High-value materials like platinum group metals and rare earths generally offer better recovery economics, while lower-value materials like lithium require scale and efficiency improvements. Regulatory frameworks increasingly mandate recycling targets and extended producer responsibility, particularly in Europe, China, and parts of North America.

Government policies supporting circular economy principles and supply chain resilience are accelerating market development. The EU's Critical Raw Materials Act, US critical minerals initiatives, and China's recycling policies create regulatory momentum supporting secondary material recovery.

Key challenges include collection infrastructure development, technology scaling, economic competitiveness with primary production, and handling complex waste streams. Many critical materials exist in low concentrations within mixed waste, requiring sophisticated separation technologies and often making recovery economically marginal. The market trajectory toward 2046 suggests continued expansion driven by increasing waste availability, technological improvements, and policy support. Battery recycling is expected to scale dramatically as first-generation EV batteries reach end-of-life around 2030-2035. Rare earth recovery will likely benefit from growing magnet waste streams and supply security concerns. Success in this market requires balancing technological innovation with economic realities, while building robust collection and processing infrastructure to capture the full potential of secondary critical material resources.

"The Global Critical Materials Recovery Market 2026-2046" provides comprehensive analysis of the rapidly expanding critical raw materials recycling industry, driven by supply chain vulnerabilities, electrification trends, and circular economy imperatives. This authoritative report examines recovery technologies, market forecasts, regulatory landscapes, and competitive dynamics across lithium-ion battery recycling, rare earth element recovery, semiconductor material extraction, and platinum group metal reclamation.

Report contents include:

  • Definition and strategic importance of critical raw materials in global supply chains
  • Electronic waste as emerging source of valuable materials with recovery rate analysis
  • Electrification and renewable energy technology material requirements
  • Comprehensive regulatory landscape mapping across 11 major countries and global initiatives
  • Market drivers, restraints, and growth opportunities through 2046
  • Technology readiness evaluation and performance metrics for extraction methods
  • Critical materials value chain analysis from collection to refined product delivery
  • Economic case studies and price trend analysis for key recovered materials (2020-2024)
  • 20-year global market forecasts by material type, recovery source, and region (2026-2046)
  • Technology Analysis & Innovation
    • Comprehensive coverage of 17 critical materials including demand trends and applications
    • Primary versus secondary production comparison with environmental impact assessment
    • Advanced extraction technologies: hydrometallurgy, pyrometallurgy, biometallurgy analysis
    • Emerging technologies: ionic liquids, electroleaching, supercritical fluid extraction
    • Recovery methods: solvent extraction, ion exchange, electrowinning, precipitation, biosorption
    • Direct recycling approaches for batteries and rare earth magnets
    • SWOT analysis for each technology category with commercialization readiness assessment
  • Market Segments & Applications
    • Semiconductor materials recovery from e-waste and photovoltaic systems
    • Collection infrastructure, pre-processing technologies, and metal recovery processes
    • Lithium-ion battery recycling value chain with cathode chemistry analysis
    • Mechanical, thermal, and chemical pre-treatment methods
    • Hydrometallurgical, pyrometallurgical, and direct recycling process comparison
    • Beyond lithium-ion battery technologies including solid-state and lithium-sulfur systems
    • Rare earth element recovery from permanent magnets and electronic components
    • Long-loop versus short-loop recycling methods with hydrogen decrepitation analysis
    • Platinum group metal recovery from automotive catalysts and fuel cell systems
    • Regional market forecasts with capacity analysis and competitive landscape mapping
  • Company Profiles: The report features comprehensive profiles of 166 industry leaders including Accurec Recycling GmbH, ACE Green Recycling, Altilium, American Battery Technology Company (ABTC), Anhua Taisen, Aqua Metals Inc., Ascend Elements, Attero, Australian Strategic Materials Ltd (ASM), BacTech Environmental Corporation, Ballard Power Systems, BANIQL, BASF, Battery Pollution Technologies, Batx Energies Private Limited, Berkeley Energia, BHP, BMW, Botree Cycling, Brazilian Nickel PLC, Carester, Ceibo, Cheetah Resources, CATL, Cirba Solutions, Circunomics, Circu Li-ion, Circular Industries, Cyclic Materials, Cylib, Dowa Eco-System Co., Dow Chemicals, Dundee Sustainable Technologies, DuPont, EcoBat, eCobalt Solutions, EcoGraf, Econili Battery, EcoPro, Ecoprogetti, Electra Battery Materials Corporation (Electra), Electramet, Elmery, Element Zero, Emulsion Flow Technologies, Enim, EnviroMetal Technologies, Eramet, Exigo Recycling, Exitcom Recycling, ExPost Technology, Farasis Energy, First Solar, Fortum Battery Recycling, 4R Energy Corporation, Freeport McMoRan, Fluor, FLSmidth, Ganfeng Lithium, Ganzhou Cyclewell Technology Co. Ltd, Garner Products, GEM Co. Ltd., GLC Recycle Pte. Ltd., Glencore, Gotion, GREEN14, Green Graphite Technologies, Green Li-ion, Green Mineral, GS Group, Guangdong Guanghua Sci-Tech, Huayou Cobalt, Henkel, Heraeus, Huayou Recycling, HydroVolt, HyProMag Ltd, InoBat, Inmetco, Ionic Technologies, Jiecheng New Energy, JL Mag, JPM Silicon GmbH, JX Nippon Metal Mining, Keyking Recycling, Korea Zinc, Kyoei Seiko, Igneo, IXOM, Jervois Global, Jetti Resources, Kemira Oyj, Librec AG, Lithium Australia, LG Chem Ltd., Li-Cycle, Li Industries, Lithion Technologies, Lohum, MagREEsource, Mecaware, Metastable Materials, Metso Corporation, Minerva Lithium, Mining Innovation Rehabilitation and Applied Research (MIRARCO), Mitsubishi Materials, Neometals and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Definition and Importance of Critical Raw Materials
  • 1.2. E-Waste as a Source of Critical Raw Materials
  • 1.3. Electrification, Renewable and Clean Technologies
  • 1.4. Regulatory Landscape
    • 1.4.1. European Union
    • 1.4.2. United States
    • 1.4.3. China
    • 1.4.4. Japan
    • 1.4.5. Australia
    • 1.4.6. Canada
    • 1.4.7. India
    • 1.4.8. South Korea
    • 1.4.9. Brazil
    • 1.4.10. Russia
    • 1.4.11. Global Initiatives
  • 1.5. Key Market Drivers and Restraints
  • 1.6. The Global Critical Raw Materials Market in 2025
  • 1.7. Critical Material Extraction Technology
    • 1.7.1. TRL of critical material extraction technologies
    • 1.7.2. Value Proposition
    • 1.7.3. Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste)
    • 1.7.4. Critical rare-earth element recovery from secondary sources
    • 1.7.5. Li-ion battery technology metal recovery
    • 1.7.6. Critical semiconductor materials recovery
    • 1.7.7. Critical platinum group metal recovery
    • 1.7.8. Critical platinum Group metal recovery
  • 1.8. Critical Raw Materials Value Chain
  • 1.9. The Economic Case for Critical Raw Materials Recovery
  • 1.10. Price Trends for Key Recovered Materials (2020-2024)
  • 1.11. Global market forecasts
    • 1.11.1. By Material Type (2025-2046)
    • 1.11.2. By Recovery Source (2025-2046)
    • 1.11.3. By Region (2025-2046)

2. INTRODUCTION

  • 2.1. Critical Raw Materials
  • 2.2. Global situation in supply and trade
  • 2.3. Circular economy
    • 2.3.1. Circular use of critical raw materials
  • 2.4. Critical and strategic raw materials used in the energy transition
    • 2.4.1. Greening critical metals
  • 2.5. Established and emerging secondary sources for critical material recovery
  • 2.6. Business models for critical material recovery from secondary sources
  • 2.7. Metals and minerals processed and extracted
    • 2.7.1. Copper
      • 2.7.1.1. Global copper demand and trends
      • 2.7.1.2. Markets and applications
      • 2.7.1.3. Copper extraction and recovery
    • 2.7.2. Nickel
      • 2.7.2.1. Global nickel demand and trends
      • 2.7.2.2. Markets and applications
      • 2.7.2.3. Nickel extraction and recovery
    • 2.7.3. Cobalt
      • 2.7.3.1. Global cobalt demand and trends
      • 2.7.3.2. Markets and applications
      • 2.7.3.3. Cobalt extraction and recovery
    • 2.7.4. Rare Earth Elements (REE)
      • 2.7.4.1. Global Rare Earth Elements demand and trends
      • 2.7.4.2. Markets and applications
      • 2.7.4.3. Rare Earth Elements extraction and recovery
      • 2.7.4.4. Recovery of REEs from secondary resources
    • 2.7.5. Lithium
      • 2.7.5.1. Global lithium demand and trends
      • 2.7.5.2. Markets and applications
      • 2.7.5.3. Lithium extraction and recovery
    • 2.7.6. Gold
      • 2.7.6.1. Global gold demand and trends
      • 2.7.6.2. Markets and applications
      • 2.7.6.3. Gold extraction and recovery
    • 2.7.7. Uranium
      • 2.7.7.1. Global uranium demand and trends
      • 2.7.7.2. Markets and applications
      • 2.7.7.3. Uranium extraction and recovery
    • 2.7.8. Zinc
      • 2.7.8.1. Global Zinc demand and trends
      • 2.7.8.2. Markets and applications
      • 2.7.8.3. Zinc extraction and recovery
    • 2.7.9. Manganese
      • 2.7.9.1. Global manganese demand and trends
      • 2.7.9.2. Markets and applications
      • 2.7.9.3. Manganese extraction and recovery
    • 2.7.10. Tantalum
      • 2.7.10.1. Global tantalum demand and trends
      • 2.7.10.2. Markets and applications
      • 2.7.10.3. Tantalum extraction and recovery
    • 2.7.11. Niobium
      • 2.7.11.1. Global niobium demand and trends
      • 2.7.11.2. Markets and applications
      • 2.7.11.3. Niobium extraction and recovery
    • 2.7.12. Indium
      • 2.7.12.1. Global indium demand and trends
      • 2.7.12.2. Markets and applications
      • 2.7.12.3. Indium extraction and recovery
    • 2.7.13. Gallium
      • 2.7.13.1. Global gallium demand and trends
      • 2.7.13.2. Markets and applications
      • 2.7.13.3. Gallium extraction and recovery
    • 2.7.14. Germanium
      • 2.7.14.1. Global germanium demand and trends
      • 2.7.14.2. Markets and applications
      • 2.7.14.3. Germanium extraction and recovery
    • 2.7.15. Antimony
      • 2.7.15.1. Global antimony demand and trends
      • 2.7.15.2. Markets and applications
      • 2.7.15.3. Antimony extraction and recovery
    • 2.7.16. Scandium
      • 2.7.16.1. Global scandium demand and trends
      • 2.7.16.2. Markets and applications
      • 2.7.16.3. Scandium extraction and recovery
    • 2.7.17. Graphite
      • 2.7.17.1. Global graphite demand and trends
      • 2.7.17.2. Markets and applications
      • 2.7.17.3. Graphite extraction and recovery
  • 2.8. Recovery sources
    • 2.8.1. Primary sources
    • 2.8.2. Secondary sources
      • 2.8.2.1. Extraction
        • 2.8.2.1.1. Hydrometallurgical extraction
          • 2.8.2.1.1.1. Overview
          • 2.8.2.1.1.2. Lixiviants
          • 2.8.2.1.1.3. SWOT analysis
        • 2.8.2.1.2. Pyrometallurgical extraction
          • 2.8.2.1.2.1. Overview
          • 2.8.2.1.2.2. SWOT analysis
        • 2.8.2.1.3. Biometallurgy
          • 2.8.2.1.3.1. Overview
          • 2.8.2.1.3.2. SWOT analysis
        • 2.8.2.1.4. Ionic liquids and deep eutectic solvents
          • 2.8.2.1.4.1. Overview
          • 2.8.2.1.4.2. SWOT analysis
        • 2.8.2.1.5. Electroleaching extraction
          • 2.8.2.1.5.1. Overview
          • 2.8.2.1.5.2. SWOT analysis
        • 2.8.2.1.6. Supercritical fluid extraction
          • 2.8.2.1.6.1. Overview
          • 2.8.2.1.6.2. SWOT analysis
      • 2.8.2.2. Recovery
        • 2.8.2.2.1. Solvent extraction
          • 2.8.2.2.1.1. Overview
          • 2.8.2.2.1.2. Rare-Earth Element Recovery
          • 2.8.2.2.1.3. SWOT analysis
        • 2.8.2.2.2. Ion exchange recovery
          • 2.8.2.2.2.1. Overview
          • 2.8.2.2.2.2. SWOT analysis
        • 2.8.2.2.3. Ionic liquid (IL) and deep eutectic solvent (DES) recovery
          • 2.8.2.2.3.1. Overview
          • 2.8.2.2.3.2. SWOT analysis
        • 2.8.2.2.4. Precipitation
          • 2.8.2.2.4.1. Overview
          • 2.8.2.2.4.2. Coagulation and flocculation
          • 2.8.2.2.4.3. SWOT analysis
        • 2.8.2.2.5. Biosorption
          • 2.8.2.2.5.1. Overview
          • 2.8.2.2.5.2. SWOT analysis
        • 2.8.2.2.6. Electrowinning
          • 2.8.2.2.6.1. Overview
          • 2.8.2.2.6.2. SWOT analysis
        • 2.8.2.2.7. Direct materials recovery
          • 2.8.2.2.7.1. Overview
          • 2.8.2.2.7.2. Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis
          • 2.8.2.2.7.3. Rare-earth Magnet Recycling by Hydrogen Decrepitation
          • 2.8.2.2.7.4. Direct Recycling of Li-ion Battery Cathodes by Sintering
          • 2.8.2.2.7.5. SWOT analysis

3. CRITICAL RAW MATERIALS RECOVERY IN SEMICONDUCTORS

  • 3.1. Critical semiconductor materials
  • 3.2. Electronic waste (e-waste)
    • 3.2.1. Types of Critical Raw Materials found in E-Waste
  • 3.3. Photovoltaic and solar technologies
    • 3.3.1. Common types of PV panels and their critical semiconductor components
    • 3.3.2. Silicon Recovery Technology for Crystalline-Si PVs
    • 3.3.3. Tellurium Recovery from CdTe Thin-Film Photovoltaics
    • 3.3.4. Solar Panel Manufacturers and Recovery Rates
  • 3.4. Concentration and value of Critical Raw Materials in E-Waste
  • 3.5. Applications and Importance of Key Critical Raw Materials
  • 3.6. Waste Recycling and Recovery Processes
  • 3.7. Collection and Sorting Infrastructure
  • 3.8. Pre-Processing Technologies
  • 3.9. Metal Recovery Technologies
    • 3.9.1. Pyrometallurgy
    • 3.9.2. Hydrometallurgy
    • 3.9.3. Biometallurgy
    • 3.9.4. Supercritical Fluid Extraction
    • 3.9.5. Electrokinetic Separation
    • 3.9.6. Mechanochemical Processing
  • 3.10. Global market 2025-2046
    • 3.10.1. Ktonnes
    • 3.10.2. Revenues
    • 3.10.3. Regional

4. CRITICAL RAW MATERIALS RECOVERY IN LI-ION BATTERIES

  • 4.1. Critical Li-ion Battery Metals
  • 4.2. Critical Li-ion Battery Technology Metal Recovery
  • 4.3. Lithium-Ion Battery recycling value chain
  • 4.4. Black mass powder
  • 4.5. Recycling different cathode chemistries
  • 4.6. Preparation
  • 4.7. Pre-Treatment
    • 4.7.1. Discharging
    • 4.7.2. Mechanical Pre-Treatment
    • 4.7.3. Thermal Pre-Treatment
  • 4.8. Comparison of recycling techniques
  • 4.9. Hydrometallurgy
    • 4.9.1. Method overview
      • 4.9.1.1. Solvent extraction
    • 4.9.2. SWOT analysis
  • 4.10. Pyrometallurgy
    • 4.10.1. Method overview
    • 4.10.2. SWOT analysis
  • 4.11. Direct recycling
    • 4.11.1. Method overview
      • 4.11.1.1. Electrolyte separation
      • 4.11.1.2. Separating cathode and anode materials
      • 4.11.1.3. Binder removal
      • 4.11.1.4. Relithiation
      • 4.11.1.5. Cathode recovery and rejuvenation
      • 4.11.1.6. Hydrometallurgical-direct hybrid recycling
    • 4.11.2. SWOT analysis
  • 4.12. Other methods
    • 4.12.1. Mechanochemical Pretreatment
    • 4.12.2. Electrochemical Method
    • 4.12.3. Ionic Liquids
  • 4.13. Recycling of Specific Components
    • 4.13.1. Anode (Graphite)
    • 4.13.2. Cathode
    • 4.13.3. Electrolyte
  • 4.14. Recycling of Beyond Li-ion Batteries
    • 4.14.1. Conventional vs Emerging Processes
    • 4.14.2. Li-Metal batteries
    • 4.14.3. Lithium sulfur batteries (Li-S)
    • 4.14.4. All-solid-state batteries (ASSBs)
  • 4.15. Economic case for Li-ion battery recycling
    • 4.15.1. Metal prices
    • 4.15.2. Second-life energy storage
    • 4.15.3. LFP batteries
    • 4.15.4. Other components and materials
    • 4.15.5. Reducing costs
  • 4.16. Competitive landscape
  • 4.17. Global capacities, current and planned
  • 4.18. Future outlook
  • 4.19. Global market 2025-2046
    • 4.19.1. Chemistry
    • 4.19.2. Ktonnes
    • 4.19.3. Revenues
    • 4.19.4. Regional

5. CRITICAL RARE-EARTH ELEMENT RECOVERY

  • 5.1. Introduction
  • 5.2. Permanent magnet applications
  • 5.3. Recovery technologies
    • 5.3.1. Long-loop and short-loop recovery methods
    • 5.3.2. Hydrogen decrepitatio
    • 5.3.3. Powder metallurgy (PM)
    • 5.3.4. Long-loop magnet recycling
    • 5.3.5. Solvent Extraction
    • 5.3.6. Ion Exchange Resin Chromatography
    • 5.3.7. Electrolysis and Metallothermic Reduction
  • 5.4. Technologies for recycling rare earth magnets from waste
  • 5.5. Markets
    • 5.5.1. Rare-earth magnet market
    • 5.5.2. Rare-earth magnet recovery technology
  • 5.6. Global market 2025-2046
    • 5.6.1. Ktonnes
    • 5.6.2. Revenues

6. CRITICAL PLATINUM GROUP METAL RECOVERY

  • 6.1. Introduction
  • 6.2. Supply chain
  • 6.3. Prices
  • 6.4. PGM Recovery
  • 6.5. PGM recovery from spent automotive catalysts
  • 6.6. PGM recovery from hydrogen electrolyzers and fuel cells
    • 6.6.1. Green hydrogen market
    • 6.6.2. PGM recovery from hydrogen-related technologies
    • 6.6.3. Catalyst Coated Membranes (CCMs)
    • 6.6.4. Fuel cell catalysts
    • 6.6.5. Emerging technologies
      • 6.6.5.1. Microwave-assisted Leaching
      • 6.6.5.2. Supercritical Fluid Extraction
      • 6.6.5.3. Bioleaching
      • 6.6.5.4. Electrochemical Recovery
      • 6.6.5.5. Membrane Separation
      • 6.6.5.6. Ionic Liquids
      • 6.6.5.7. Photocatalytic Recovery
    • 6.6.6. Sustainability of the hydrogen economy
  • 6.7. Markets
  • 6.8. Global market 2025-2046
    • 6.8.1. Ktonnes
    • 6.8.2. Revenues

7. COMPANY PROFILES(166 company profiles)

8. APPENDICES

  • 8.1. Research Methodology
  • 8.2. Glossary of Terms
  • 8.3. List of Abbreviations

9. REFERENCES

List of Tables

  • Table 1. List of Key Critical Raw Materials and Their Primary Applications
  • Table 2. Regulatory Landscape for Critical Raw Materials by Country/Region
  • Table 3. Key Market Drivers and Restraints in Critical Raw Materials Recovery
  • Table 4. Global Production of Critical Materials by Country (Top 10 Countries)
  • Table 5. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2046)
  • Table 6. Value Proposition for Critical Material Extraction Technologies
  • Table 7. Critical Material Extraction Methods Evaluated by Key Performance Metrics
  • Table 8. Critical Rare-Earth Element Recovery Technologies from Secondary Sources
  • Table 9. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability
  • Table 10. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications
  • Table 11. Critical Semiconductor Material Recovery from Secondary Sources
  • Table 12. Critical Platinum Group Metal Recovery
  • Table 13. Price Trends for Key Recovered Materials (2020-2024)
  • Table 14. Global critical raw materials recovery market by material types (2025-2046), ktonnes
  • Table 15. Global Critical Raw Materials Recovery Market by Material Types (2025-2046), by Value (Billions USD)
  • Table 16. Global critical raw materials recovery market by recovery source (2025-2046), in ktonnes
  • Table 17. Global critical raw materials recovery market by region (2025-2046), by ktonnes
  • Table 18. Global Critical Raw Materials Recovery Market by Region (2025-2046), by Value (Billions USD)
  • Table 19. Primary global suppliers of critical raw materials
  • Table 20. Current contribution of recycling to meet global demand of CRMs
  • Table 21. Applications and Importance of Key Critical Raw Materials
  • Table 22. Comparison of Recovery Rates for Different Critical Materials
  • Table 23. Established and emerging secondary sources for critical material recovery
  • Table 24. Business models for critical material recovery from secondary sources
  • Table 25. Markets and applications: copper
  • Table 26. Technologies and Techniques for Copper Extraction and Recovery
  • Table 27. Markets and applications: nickel
  • Table 28. Technologies and Techniques for Nickel Extraction and Recovery
  • Table 29. Markets and applications: cobalt
  • Table 30. Technologies and Techniques for Cobalt Extraction and Recovery
  • Table 31. Markets and applications: rare earth elements
  • Table 32. Technologies and Techniques for Rare Earth Elements Extraction and Recovery
  • Table 33. Markets and applications: lithium
  • Table 34. Technologies and Techniques for Lithium Extraction and Recovery
  • Table 35. Markets and applications: gold
  • Table 36. Technologies and Techniques for Gold Extraction and Recovery
  • Table 37. Markets and applications: uranium
  • Table 38. Technologies and Techniques for Uranium Extraction and Recovery
  • Table 39. Markets and applications: zinc
  • Table 40. Zinc Extraction and Recovery Technologies
  • Table 41. Markets and applications: manganese
  • Table 42. Manganese Extraction and Recovery Technologies
  • Table 43. Markets and applications: tantalum
  • Table 44. Tantalum Extraction and Recovery Technologies
  • Table 45. Markets and applications: niobium
  • Table 46. Niobium Extraction and Recovery Technologies
  • Table 47. Markets and applications: indium
  • Table 48. Indium Extraction and Recovery Technologies
  • Table 49. Markets and applications: gallium
  • Table 50. Gallium Extraction and Recovery Technologies
  • Table 51. Markets and applications: germanium
  • Table 52. Germanium Extraction and Recovery Technologies
  • Table 53. Markets and applications: antimony
  • Table 54. Antimony Extraction and Recovery Technologies
  • Table 55. Markets and applications: scandium
  • Table 56. Scandium Extraction and Recovery Technologies
  • Table 57. Graphite Markets and Applications
  • Table 58. Graphite Extraction and Recovery Techniques and Technologies
  • Table 59. Comparison of Primary vs Secondary Production for Key Materials
  • Table 60. Environmental Impact Comparison: Primary vs Secondary Production
  • Table 61. Technologies for critical material recovery from secondary sources
  • Table 62. Technologies for critical raw material recovery from secondary sources
  • Table 63. Critical raw material extraction technologies
  • Table 64. Pyrometallurgical extraction methods
  • Table 65. Bioleaching processes and their applicability to critical materials
  • Table 66. Comparative analysis of metal recovery technologies
  • Table 67. Technology readiness of critical material recovery technologies by secondary material sources
  • Table 68. Technology readiness of critical semiconductor recovery technologies
  • Table 69. Critical Semiconductors Applications and Recycling Rates
  • Table 70. Types of critical raw Materials found in E-Waste
  • Table 71. E-waste Generation and Recycling Rates
  • Table 72. Critical Semiconductor Recovery from Photovoltaics
  • Table 73. Solar Panel Manufacturers and Their Recycling Capabilities
  • Table 74. Concentration and Value of Critical Raw Materials in E-waste
  • Table 75. Critical Semiconductor Materials and Their Applications
  • Table 76. Critical Materials Waste Recycling and Recovery Processes
  • Table 77. Collection and Sorting Infrastructure for Critical Materials Recycling
  • Table 78. Pre-Processing Technologies for Critical Materials Recycling
  • Table 79. Global recovered critical raw electronics material, 2025-2046 (ktonnes)
  • Table 80. Global recovered critical raw electronics material market, 2025-2046 (billions USD)
  • Table 81. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes)
  • Table 82. Drivers for Recycling Li-ion Batteries
  • Table 83. Li-ion Battery Metal Recovery Technologies
  • Table 84. Li-ion battery recycling value chain
  • Table 85. Typical lithium-ion battery recycling process flow
  • Table 86. Main feedstock streams that can be recycled for lithium-ion batteries
  • Table 87. Comparison of LIB recycling methods
  • Table 88. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries
  • Table 89. Economic assessment of battery recycling options
  • Table 90. Retired lithium-batteries
  • Table 91. Global capacities, current and planned (tonnes/year)
  • Table 92. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2025-2046
  • Table 93. Global Li-ion battery recycling market, 2025-2046 (ktonnes)
  • Table 94. Global Li-ion battery recycling market, 2025-2046 (billions USD)
  • Table 95. Li-ion battery recycling market, by region, 2025-2046 (ktonnes)
  • Table 96. Critical rare-earth elements markets and applications
  • Table 97. Primary and Secondary Material Streams for Rare-Earth Element Recovery
  • Table 98. Critical rare-earth element recovery technologies
  • Table 99. Rare Earth Element Content in Secondary Material Sources
  • Table 100. Comparison of Short-loop and Long-loop Rare Earth Recovery Methods
  • Table 101. Long-loop Rare-Earth Magnet Recycling Technologies
  • Table 102. Technologies for recycling rare earth magnets from waste
  • Table 103. Rare Earth Element Demand by Application
  • Table 104. Global rare-earth magnet key players in a table
  • Table 105. Rare Earth Magnet Recycling Value Chain
  • Table 106.Technology readiness of REE recovery technologies in a table
  • Table 107. Global recovered critical rare-earth element market, 2025-2046 (ktonnes)
  • Table 108. Global recovered critical rare-earth element market, 2025-2046 (billions USD)
  • Table 109. Global PGM Demand Segmented by Application
  • Table 110. Critical Platinum Group Metals: Applications and Recycling Rates
  • Table 111. Technology Readiness of Critical PGM Recovery from Secondary Sources
  • Table 112. Automotive Catalyst Recycling Players
  • Table 113. Challenges in transitioning to new PEMEL catalysts and the role of PGM recycling in a table
  • Table 114. Key Suppliers of Catalysts for Fuel Cells
  • Table 115. Global recovered critical platinum group metal market, 2025-2046 (ktonnes)
  • Table 116. Global recovered critical platinum group metal market, 2025-2046 (billions USD)
  • Table 117. Glossary of terms
  • Table 118. List of Abbreviations

List of Figures

  • Figure 1. TRL of critical material extraction technologies
  • Figure 2. Critical Raw Materials Value Chain
  • Figure 3. Global critical raw materials recovery market by material types (2025-2046), by ktonnes
  • Figure 4. Global Critical Raw Materials Recovery Market by Material Types (2025-2046), by Value (Billions USD)
  • Figure 5. Global critical raw materials recovery market by recovery source (2025-2046), by ktonnes
  • Figure 6. Global Critical Raw Materials Recovery Market by Recovery Source (2025-2046), by Value (Billions USD)
  • Figure 7. Global critical raw materials recovery market by region (2025-2046), by ktonnes
  • Figure 8. Global Critical Raw Materials Recovery Market by Region (2025-2046), by Value (Billions USD)
  • Figure 9. Conceptual diagram illustrating the Circular Economy
  • Figure 10. Circular Economy Model for Critical Materials
  • Figure 11. Copper demand outlook
  • Figure 12. Global nickel demand outlook
  • Figure 13. Global cobalt demand outlook
  • Figure 14. Global lithium demand outlook
  • Figure 15. Global graphite demand outlook
  • Figure 16. Solvent extraction (SX) in hydrometallurgy
  • Figure 17. SWOT analysis: hydrometallurgical extraction
  • Figure 18. SWOT analysis: pyrometallurgical extraction of critical materials
  • Figure 19. SWOT analysis: biometallurgy for critical material extraction
  • Figure 20. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction
  • Figure 21. SWOT analysis: electrochemical leaching for critical material extraction
  • Figure 22. SWOT analysis: supercritical fluid extraction technology
  • Figure 23. SWOT analysis: solvent extraction recovery technology
  • Figure 24. SWOT analysis: ion exchange resin recovery technology
  • Figure 25. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery
  • Figure 26. SWOT analysis: precipitation for critical material recovery
  • Figure 27. SWOT analysis: biosorption for critical material recovery
  • Figure 28. SWOT analysis: electrowinning for critical material recovery
  • Figure 29. SWOT analysis: direct critical material recovery technology
  • Figure 31. Global recovered critical raw electronics materials market, 2025-2046 (ktonnes)
  • Figure 32. Global recovered critical raw electronics material market, 2025-2046 (Billion USD)
  • Figure 33. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes)
  • Figure 34. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials
  • Figure 35. Mechanical separation flow diagram
  • Figure 36. Recupyl mechanical separation flow diagram
  • Figure 37. Flow chart of recycling processes of lithium-ion batteries (LIBs)
  • Figure 38. Hydrometallurgical recycling flow sheet
  • Figure 39. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling
  • Figure 40. Umicore recycling flow diagram
  • Figure 41. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling
  • Figure 42. Schematic of direct recyling process
  • Figure 43. SWOT analysis for Direct Li-ion Battery Recycling
  • Figure 44. Schematic diagram of a Li-metal battery
  • Figure 45. Schematic diagram of Lithium-sulfur battery
  • Figure 46. Schematic illustration of all-solid-state lithium battery
  • Figure 47. Global scrapped EV (BEV+PHEV) forecast to 2040
  • Figure 48. Global Li-ion battery recycling market, 2025-2046 (chemistry)
  • Figure 49. Global Li-ion battery recycling market, 2025-2046 (ktonnes)
  • Figure 50. Global Li-ion battery recycling market, 2025-2046 (Billion USD)
  • Figure 51. Global Li-ion battery recycling market, by region, 2025-2046 (ktonnes)
  • Figure 52. Global recovered critical rare-earth element market, 2025-2046 (ktonnes)
  • Figure 53. Global recovered critical rare-earth element market, 2025-2046 (Billion USD)
  • Figure 54. Global recovered critical platinum group metal market, 2025-2046 (ktonnes)
  • Figure 55. Global recovered critical platinum group metal market, 2025-2046 (Billion USD)