绿色建材·技术的全球市场(2026年~2036年)
市场调查报告书
商品编码
1825999

绿色建材·技术的全球市场(2026年~2036年)

The Global Market for Green Building Materials and Technologies 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 360 Pages, 44 Tables, 37 Figures | 订单完成后即时交付

价格

全球绿色建筑材料和技术市场是建筑业最具活力、发展最快的细分市场之一,其驱动力来自紧迫的气候变迁课题和技术创新。预计到2036年,仅永续建筑材料市场的收入就将达到1,900亿美元,该市场涵盖了一个全面的产品、服务和技术生态系统,旨在最大限度地提高建筑性能和居住者福祉,同时最大限度地减少环境影响。

该市场以永续建筑材料为基础,其中以传统木製品为主。生物基新材料正呈现爆炸性成长,因为它们在提供卓越性能的同时,与传统替代品相比,还能固碳并降低能耗。

低碳混凝土技术或许是最重要的细分市场,它解决了传统波特兰水泥生产约占全球二氧化碳排放量8%这一现实问题。包括互补胶凝材料、碳捕获和利用技术以及替代黏合剂系统的先进方法正在改变这种基础建筑材料。

先进的隔热技术,尤其是气凝胶和相变材料,正在重新定义热性能标准。这些材料以最小的厚度提供卓越的隔热性能,最大限度地提高能源效率,同时增强建筑的灵活性。随着製造成本的下降和性能优势得到更广泛的认可,全球气凝胶市场正在经历快速成长。

智慧建筑技术提供了一种智慧层,可以将静态结构转变为反应迅速、适应性强的环境。采用电致变色和热致变色技术的智慧窗户能够在不影响采光的情况下实现动态太阳能控制,而楼宇自动化系统透过人工智慧驱动的最佳化可实现 15-30% 的节能。这些技术代表了材料科学、物联网感测器和人工智慧的融合。

能源系统整合将推动最大的成长轨迹。过去十年,太阳能光电系统的成本降低了 85%,而热泵的采用正在加速建筑电气化进程。储能系统优化了再生能源的利用,同时使建筑物能够参与电网服务。先进的施工方法正在彻底改变建筑物的设计、製造和组装方式。模组化施工能够实现受控的工厂环境,确保品质并消除浪费,而3D列印技术也已从原型应用发展到全尺寸建筑施工。这些方法解决了建筑业面临的课题,例如劳动力短缺、品质控制和环境影响。

市场驱动因素包括日益严格的政府法规,这些法规旨在促进永续建筑的发展、企业永续发展计画以及消费者对环保建筑日益增长的偏好。

本报告探讨了全球绿色建筑材料和技术市场,并对正在重塑建筑业环境足迹的创新技术、创新材料和新商业模式提供了重要见解。

目录

第1章 摘要整理

  • 市场概览
  • 全球营收
  • 永续建筑材料
  • 保温技术
  • 智慧窗户

第2章 建设手法

  • 模组化建设
  • 3D列印
  • 被动式设计

第3章 能源系统

  • 再生能源整合
  • 大楼管理

第4章 水资源管理

  • 水效率
  • 处理系统

第5章 室内环境的品质

  • 空气品质
  • 音响管理

第6章 材料

  • 大麻基材料
  • 菌丝体基材料
  • 永续混凝土和水泥替代品
  • 天然纤维复合材料
  • 纤维素奈米纤维
  • 永续保温材料

第7章 碳回收·利用

  • 概要
  • 市场结构
  • 水泥产业上CCUS技术
  • 产品
  • 混凝土保养
  • 成本
  • 课题

第8章 水泥生产替代燃料

  • 概述
  • 化石燃料替代
  • 公司
  • 水泥窑
  • 水泥业的净零排放
  • 现代化水泥厂
  • 水泥生产中的氢气
  • 窑炉电气化
  • 电化学水泥加工
  • 太阳能水泥生产

第9章 最终用途市场

  • 概要
  • 住宅
  • 商业大楼·办公大楼
  • 基础设施

第10章 企业简介(企业172公司的简介)

第11章 参考文献

The global green building materials and technologies market represents one of the construction industry's most dynamic and rapidly evolving sectors, driven by urgent climate imperatives and technological innovation. With revenues projected to reach $190 billion by 2036 for sustainable construction materials alone, this market encompasses a comprehensive ecosystem of products, services, and technologies designed to minimize environmental impact while maximizing building performance and occupant wellbeing.

The market's foundation rests on sustainable construction materials, where traditional wood products dominate. Emerging bio-based materials are experiencing explosive growth as these materials offer superior performance characteristics while sequestering carbon and reducing embodied energy compared to conventional alternatives.

Low-carbon concrete technologies represent perhaps the most critical segment, addressing the fact that conventional Portland cement manufacturing accounts for approximately 8% of global CO2 emissions. Advanced approaches including supplementary cementitious materials, carbon capture and utilization technologies, and alternative binder systems are transforming this foundational building material.

Advanced insulation technologies, particularly aerogels and phase-change materials, are redefining thermal performance standards. These materials achieve superior insulation properties in minimal thickness, enabling architectural flexibility while maximizing energy efficiency. The global aerogel market alone is experiencing rapid growth as manufacturing costs decline and performance advantages become widely recognized.

Smart building technologies create the intelligence layer that transforms static structures into responsive, adaptive environments. Smart windows utilizing electrochromic and thermochromic technologies provide dynamic solar control without compromising daylighting, while building automation systems achieve 15-30% energy savings through AI-powered optimization. These technologies represent the convergence of materials science, IoT sensors, and artificial intelligence.

Energy systems integration drives the most significant growth trajectory. Solar photovoltaic systems benefit from 85% cost reductions over the past decade, while heat pump adoption accelerates building electrification. Energy storage systems enable buildings to participate in grid services markets while optimizing renewable energy utilization. Advanced construction methods are revolutionizing how buildings are designed, manufactured, and assembled. Modular construction enables controlled factory environments that ensure quality while reducing waste, while 3D printing shows explosive growth from prototype applications to full-scale building construction. These methods address construction industry challenges including labor shortages, quality control, and environmental impact.

Market drivers include increasingly stringent government regulations promoting sustainable construction, corporate sustainability commitments, and growing consumer preference for environmentally friendly buildings.

"The Global Market for Green Building Materials and Technologies 2026-2036" presents a comprehensive analysis of the rapidly evolving sustainable construction sector, valued at over $190 billion and projected to reach unprecedented growth by 2036. This authoritative market intelligence report delivers critical insights into the transformative technologies, innovative materials, and emerging business models reshaping the construction industry's environmental footprint while meeting stringent climate targets and regulatory requirements.

The report examines five key market segments driving sustainable construction transformation: sustainable materials, building energy systems, smart building technologies, advanced construction methods , and regional market dynamics across North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America. Each segment analysis includes detailed revenue projections, technology assessments, competitive landscapes, and market penetration strategies essential for stakeholders navigating this dynamic marketplace.

Report contents include:

  • Global market trends and drivers analysis including regulatory frameworks, corporate sustainability commitments, and consumer preferences
  • Comprehensive revenue projections across five major market segments with detailed growth trajectories through 2036
  • Benefits assessment of green buildings including carbon reduction, operational efficiency, and occupant wellbeing metrics
  • Sustainable Materials
    • Low-carbon concrete technologies including supplementary cementitious materials, carbon capture integration, and alternative binder systems
    • Sustainable wood products encompassing certified timber, engineered materials, and carbon sequestration capabilities
    • Recycled materials applications including steel, aggregates, and waste-to-resource transformation strategies
    • Bio-based materials innovations covering hemp, mycelium, natural fiber composites, and cellulose nanofibers
  • Advanced Technologies
    • Insulation technologies including aerogel innovations, installation methods, and performance metrics analysis
    • Smart windows systems covering electrochromic glass, thermochromic materials, and building integration strategies
    • Construction methods including modular systems, 3D printing applications, and passive design optimization
  • Building Systems Integration
    • Energy systems analysis covering renewable integration, solar PV deployment, heat pump technologies, and energy storage solutions
    • Building management systems including smart controls, energy monitoring, and optimization algorithms
    • Water management technologies encompassing efficiency systems, treatment solutions, and monitoring capabilities
  • Environmental Quality Solutions
    • Indoor air quality systems including ventilation, filtration, and monitoring technologies
    • Acoustic management solutions covering sound insulation, noise control, and design integration strategies
  • Specialized Materials & Technologies
    • Hemp-based construction materials including hempcrete, fiberboard, and insulation applications
    • Mycelium-based products spanning insulation, structural elements, acoustic panels, and decorative applications
    • Sustainable concrete alternatives including geopolymer systems, recycled aggregates, self-healing technologies, and biomineral binders
    • Carbon capture and utilization technologies with cost analysis and market challenges assessment
    • Alternative fuels for cement production including hydrogen deployment, kiln electrification, and solar power integration
  • Market Applications & Company Intelligence
  • End-use market analysis covering residential, commercial, and infrastructure applications with sector-specific requirements The report profiles 172 leading companies driving green building innovation including 1414 Degrees, ABIS Aerogel, Active Aerogels, Adaptavate, Aerobel, Aerofybers Technologies, aerogel-it GmbH, Aerogel Core, Aerogel Technologies, AGITEC International, Airco Process Technology, AISTI, Aizawa Concrete Corporation, Alchemy GmbH, Algoma Steel, Antora Energy, Aperam BioEnergia, ArcelorMittal, Ardent, Armacell International, Aspen Aerogels, Basilisk, BASF, Betolar, Bio Fab NZ, Biohm, Biomason, BioZeroc, Blastr Green Steel, BlockSolutions, Blue Planet Systems, Blueshift Materials, Boston Metal, Brimstone, ByFusion Global, C2CNT/Capital Power, Cabot Corporation, Cambridge Carbon Capture, Cambridge Electric Cement, CarbiCrete, Carbonaide, CarbonBuilt, CarbonCure Technologies, Carbon Instead, Carbon Limit, Carbon Re, Carbon Upcycling Technologies, Carbon8 Systems, C-Capture, Cellicon, Cellutech, CemVision, Checkerspot, China Baowu Steel Group, Concrene Limited, Concretenne, Concrete4Change, Concular, Coolbrook, Croft, DMAT, Dongjin Semichem, ecoLocked GmbH, EcoMaterial Technologies, Eden Innovations, Electra Steel, Electrified Thermal Solutions, Elisto GmbH, Emirates Steel Arkan, EVA Greentech, Fibenol, Fiberwood, Fortera, Fuji Silysia Chemical, Gelanggang Kencana, Greeniron H2, GravitHy, Greenore Cleantech, Green Earth Aerogel Technologies, Green360 Technologies, Guangdong Alison Hi-Tech, Hebei Jinna Technology, H2 Green Steel, HBIS Group, Helios, HempWood, Hexion, Holcim, Hoffmann Green Cement Technologies, Hempitecture and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. Benefits of Green Buildings
    • 1.1.2. Global Trends and Drivers
  • 1.2. Global Revenues
    • 1.2.1. Sustainable Materials, by type
    • 1.2.2. Sustainable Materials, by market
    • 1.2.3. Building Energy Systems
    • 1.2.4. Smart Building Technologies
    • 1.2.5. Advanced Construction Methods
    • 1.2.6. Regional Green Building Technology Markets
  • 1.3. Sustainable Construction Materials
    • 1.3.1. Low-carbon Concrete
    • 1.3.2. Sustainable Wood Products
    • 1.3.3. Recycled Materials
    • 1.3.4. Bio-based materials
  • 1.4. Insulation Technologies
    • 1.4.1. Advanced Materials
    • 1.4.2. Installation Methods
    • 1.4.3. Performance Metrics
  • 1.5. Smart Windows
    • 1.5.1. Electrochromic Glass
    • 1.5.2. Thermochromic Systems
    • 1.5.3. Integration Technologies

2. CONSTRUCTION METHODS

  • 2.1. Modular Construction
    • 2.1.1. Manufacturing Processes
    • 2.1.2. Assembly Systems
    • 2.1.3. Quality Control
  • 2.2. 3D Printing
    • 2.2.1. Material Development
    • 2.2.2. Printing System
    • 2.2.3. Applications
  • 2.3. Passive Design
    • 2.3.1. Solar Optimization
    • 2.3.2. Natural Ventilation
    • 2.3.3. Thermal Mass

3. ENERGY SYSTEMS

  • 3.1. Renewable Integration
    • 3.1.1. Solar PV Systems
    • 3.1.2. Heat Pumps
    • 3.1.3. Energy Storage
  • 3.2. Building Management
    • 3.2.1. Smart Controls
    • 3.2.2. Energy Monitoring
    • 3.2.3. Optimization Systems

4. WATER MANAGEMENT

  • 4.1. Water Efficiency
    • 4.1.1. Low-flow Systems
    • 4.1.2. Rainwater Harvesting
    • 4.1.3. Greywater Systems
  • 4.2. Treatment Systems
    • 4.2.1. On-site Treatment
    • 4.2.2. Recycling Systems
    • 4.2.3. Monitoring Technologies

5. INDOOR ENVIRONMENTAL QUALITY

  • 5.1. Air Quality
    • 5.1.1. Ventilation Systems
    • 5.1.2. Filtration Technology
    • 5.1.3. Monitoring Systems
  • 5.2. Acoustic Management
    • 5.2.1. Sound Insulation
    • 5.2.2. Noise Control
    • 5.2.3. Design Integration

6. MATERIALS

  • 6.1. Hemp-based Materials
    • 6.1.1. Hemp Concrete (Hempcrete)
    • 6.1.2. Hemp Fiberboard
    • 6.1.3. Hemp Insulation
  • 6.2. Mycelium-based Materials
    • 6.2.1. Insulation
    • 6.2.2. Structural Elements
    • 6.2.3. Acoustic Panels
    • 6.2.4. Decorative Elements
  • 6.3. Sustainable Concrete and Cement Alternatives
    • 6.3.1. Geopolymer Concrete
    • 6.3.2. Recycled Aggregate Concrete
    • 6.3.3. Lime-Based Materials
    • 6.3.4. Self-healing concrete
      • 6.3.4.1. Bioconcrete
      • 6.3.4.2. Fiber concrete
    • 6.3.5. Microalgae biocement
    • 6.3.6. Carbon-negative concrete
    • 6.3.7. Biomineral binders
    • 6.3.8. Clinker substitutes
  • 6.4. Natural Fiber Composites
    • 6.4.1. Types of Natural Fibers
    • 6.4.2. Properties
    • 6.4.3. Applications in Construction
  • 6.5. Cellulose nanofibers
    • 6.5.1. Sandwich composites
    • 6.5.2. Cement additives
    • 6.5.3. Pump primers
    • 6.5.4. Insulation materials
    • 6.5.5. Coatings and paints
    • 6.5.6. 3D printing materials
  • 6.6. Sustainable Insulation Materials
    • 6.6.1. Types of sustainable insulation materials
    • 6.6.2. Aerogel Insulation
      • 6.6.2.1. Silica aerogels
        • 6.6.2.1.1. Properties
        • 6.6.2.1.2. Thermal conductivity
        • 6.6.2.1.3. Mechanical
        • 6.6.2.1.4. Silica aerogel precursors
        • 6.6.2.1.5. Products
          • 6.6.2.1.5.1. Monoliths
          • 6.6.2.1.5.2. Powder
          • 6.6.2.1.5.3. Granules
          • 6.6.2.1.5.4. Blankets
          • 6.6.2.1.5.5. Aerogel boards
          • 6.6.2.1.5.6. Aerogel renders
        • 6.6.2.1.6. 3D printing of aerogels
        • 6.6.2.1.7. Silica aerogel from sustainable feedstocks
        • 6.6.2.1.8. Silica composite aerogels
          • 6.6.2.1.8.1. Organic crosslinkers
        • 6.6.2.1.9. Cost of silica aerogels
      • 6.6.2.2. Aerogel-like foam materials
        • 6.6.2.2.1. Properties
        • 6.6.2.2.2. Applications
      • 6.6.2.3. Metal oxide aerogels
      • 6.6.2.4. Organic aerogels
        • 6.6.2.4.1. Polymer aerogels
      • 6.6.2.5. Biobased and sustainable aerogels (bio-aerogels)
        • 6.6.2.5.1. Cellulose aerogels
          • 6.6.2.5.1.1. Cellulose nanofiber (CNF) aerogels
          • 6.6.2.5.1.2. Cellulose nanocrystal aerogels
          • 6.6.2.5.1.3. Bacterial nanocellulose aerogels
        • 6.6.2.5.2. Lignin aerogels
        • 6.6.2.5.3. Alginate aerogels
        • 6.6.2.5.4. Starch aerogels
        • 6.6.2.5.5. Chitosan aerogels
      • 6.6.2.6. Carbon aerogels
        • 6.6.2.6.1. Carbon nanotube aerogels
        • 6.6.2.6.2. Graphene and graphite aerogels
      • 6.6.2.7. Additive manufacturing (3D printing)
        • 6.6.2.7.1. Carbon nitride
        • 6.6.2.7.2. Gold
        • 6.6.2.7.3. Cellulose
        • 6.6.2.7.4. Graphene oxide
      • 6.6.2.8. Hybrid aerogels

7. CARBON CAPTURE AND UTILIZATION

  • 7.1. Overview
  • 7.2. Market structure
  • 7.3. CCUS technologies in the cement industry
  • 7.4. Products
    • 7.4.1. Carbonated aggregates
    • 7.4.2. Additives during mixing
    • 7.4.3. Carbonates from natural minerals
    • 7.4.4. Carbonates from waste
  • 7.5. Concrete curing
  • 7.6. Costs
  • 7.7. Challenges

8. ALTERNATIVE FUELS FOR CEMENT PRODUCTION

  • 8.1. Overview
  • 8.2. Fossil Fuels Alternatives
  • 8.3. Companies
  • 8.4. Cement Kilns
    • 8.4.1. Fuel Switching
      • 8.4.1.1. Projects
      • 8.4.1.2. Burner Design Considerations
    • 8.4.2. Alternative Fuels for Cement Kilns
      • 8.4.2.1. Waste
      • 8.4.2.2. Biomass
  • 8.5. Net-zero in the Cement Sector
  • 8.6. Modern cement plants
  • 8.7. Hydrogen in Cement Production
    • 8.7.1. Low-carbon hydrogen deployment in cement production
  • 8.8. Kiln electrification
    • 8.8.1. Overview
    • 8.8.2. Rotodynamic Heating Technology
    • 8.8.3. Electric Arc Plasma Technologies
    • 8.8.4. Resistive Heating
    • 8.8.5. Microwave and Induction Heating
      • 8.8.5.1. Carbon capture economics for cement production
    • 8.8.6. Electrifying cement plant calciners
  • 8.9. Electrochemical Cement Processing
  • 8.10. Solar power for cement production
    • 8.10.1. Concentrated Solar Power (CSP)
    • 8.10.2. CSP in Cement Production Technology

9. END-USE MARKETS

  • 9.1. Overview
  • 9.2. Residential Buildings
  • 9.3. Commercial and Office Buildings
  • 9.4. Infrastructure

10. COMPANY PROFILES (172 company profiles)

11. REFERENCES

List of Tables

  • Table 1. Global trends and drivers in sustainable construction materials
  • Table 2. Global revenues in sustainable construction materials, by materials type, 2020-2036 (millions USD)
  • Table 3. Global revenues in sustainable construction materials, by market, 2020-2036 (millions USD)
  • Table 4. Global revenues in building energy systems for green buildings, by technology type, 2020-2036 (millions USD)
  • Table 5. Global revenues in smart building technologies for green buildings, by application, 2020-2036 (millions USD)
  • Table 6. Global revenues in advanced construction methods for green buildings, 2020-2036 (millions USD)
  • Table 7. Global revenues in green building technologies by major regions, 2020-2036 (millions USD)
  • Table 8. Types of Sustainable Wood Products
  • Table 9. Types of Recycled Construction Materials
  • Table 10. Types of Bio-based Construction Materials
  • Table 11. Established bio-based construction materials
  • Table 12. Advanced Insulation Materials Comparison
  • Table 13. Installation Methods for Insulation Systems
  • Table 14. Performance Metrics Table for Insulation Systems
  • Table 15. Integration Technologies for Smart Windows
  • Table 16. Manufacturing Processes for Modular Construction
  • Table 17. Assembly Systems for Modular Construction
  • Table 18. Printing Systems for Construction 3D Printing
  • Table 19. Advanced Ventilation Systems
  • Table 20. Advanced Filtration Technologies
  • Table 21. Air Quality Monitoring Parameters
  • Table 22. Types of self-healing concrete
  • Table 23. General properties and value of aerogels
  • Table 24. Key properties of silica aerogels
  • Table 25. Chemical precursors used to synthesize silica aerogels
  • Table 26. Commercially available aerogel-enhanced blankets
  • Table 27. Typical structural properties of metal oxide aerogels
  • Table 28. Polymer aerogels companies
  • Table 29. Types of biobased aerogels
  • Table 30. Carbon aerogel companies
  • Table 31. Conversion pathway for CO2-derived building materials
  • Table 32. Carbon capture technologies and projects in the cement sector
  • Table 33. Carbonation of recycled concrete companies
  • Table 34. Current and projected costs for some key CO2 utilization applications in the construction industry
  • Table 35. Market challenges for CO2 utilization in construction materials
  • Table 36. Temperature Ranges Achieved by Different Energy Sources for Cement Kilns
  • Table 37. Benchmarking Cement High Temperature Heat Technologies
  • Table 38. Companies in Renewable Power Sources for Electric Kilns
  • Table 39. Fuel Switching and CCS Projects in the Cement Sector
  • Table 40. Benchmarking of Alternative Fuels
  • Table 41. Benchmarking Kiln Electrification Technologies for Cement Production
  • Table 42. Electric Arc Plasma Technologies for Cement Production
  • Table 43. Comparing Conventional Cement Production with CCUS to Electrified Cement Production with CCUS
  • Table 44. Technologies in CSP for Cement Pyroprocesses

List of Figures

  • Figure 1. Global revenues in sustainable construction materials, by materials type, 2020-2036 (millions USD)
  • Figure 2. Global revenues in sustainable construction materials, by market, 2020-2036 (millions USD)
  • Figure 3. Global revenues in building energy systems for green buildings, by technology type, 2020-2036 (millions USD)
  • Figure 4. Global revenues in smart building technologies for green buildings, by application, 2020-2036 (millions USD)
  • Figure 5. Global revenues in advanced construction methods for green buildings, 2020-2036 (millions USD)
  • Figure 6. Global revenues in green building technologies by major regions, 2020-2036 (millions USD)
  • Figure 7. Luum Temple, constructed from Bamboo
  • Figure 8. Typical structure of mycelium-based foam
  • Figure 9. Commercial mycelium composite construction materials
  • Figure 10. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right)
  • Figure 11. Self-healing bacteria crack filler for concrete
  • Figure 12. Self-healing bio concrete
  • Figure 13. Microalgae based biocement masonry bloc
  • Figure 14. Classification of aerogels
  • Figure 15. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner
  • Figure 16. Monolithic aerogel
  • Figure 17. Aerogel granules
  • Figure 18. Internal aerogel granule applications
  • Figure 19. 3D printed aerogels
  • Figure 20. Lignin-based aerogels
  • Figure 21. Fabrication routes for starch-based aerogels
  • Figure 22. Graphene aerogel
  • Figure 23. Schematic of CCUS in cement sector
  • Figure 24. Carbon8 Systems' ACT process
  • Figure 25. CO2 utilization in the Carbon Cure process
  • Figure 26. Aizawa self-healing concrete
  • Figure 27. ArcelorMittal decarbonization strategy
  • Figure 28. Thermal Conductivity Performance of ArmaGel HT
  • Figure 29. SLENTEX-R roll (piece)
  • Figure 30. Biozeroc Biocement
  • Figure 31. Carbon Re's DeltaZero dashboard
  • Figure 32. Neustark modular plant
  • Figure 33. HIP AERO paint
  • Figure 34. Schematic of HyREX technology
  • Figure 35. EAF Quantum
  • Figure 36. CNF insulation flat plates
  • Figure 37. Quartzene-R