全球先进化学回收市场(2026-2040)
市场调查报告书
商品编码
1878432

全球先进化学回收市场(2026-2040)

The Global Advanced Chemical Recycling Market 2026-2040

出版日期: | 出版商: Future Markets, Inc. | 英文 482 Pages, 143 Tables, 56 Figures | 订单完成后即时交付

价格

先进化学回收市场代表了一种变革性的塑胶废弃物管理方法,它将消费后聚合物转化为分子级结构单元或高价值化学原料。与传统机械回收(其处理受污染、多层和降解塑胶的能力有限)不同,化学回收技术可以处理复杂的废弃物,并生产适用于食品包装、医疗器材和汽车零件等高要求应用的高品质原生材料。该市场持续快速扩张,全球化学回收产能的复合年增长率超过25%。推动这一加速成长的因素包括:欧盟循环经济行动计画等严格的监管框架、联合利华、雀巢和宝洁等主要品牌所有者的企业永续发展举措,以及对能够处理传统技术无法处理的混合塑胶废弃物的先进回收解决方案的迫切需求。从线性经济模式转向循环经济模式的转变,使经济和环境激励机制相协调,促使金融机构调动超过100亿美元的专款用于循环塑胶计画。

市场上有四大类技术,每类技术都有独特的优点与应用。热解技术在370至550°C的温度下运行,透过热分解将聚合物分解成热解油、气体和炭。相对简单的技术即可处理混合塑胶流。目前,商业设施的年处理规模为10万至50万吨,Brightmark、Plastic Energy和Agilyx等公司已展示了可行的整合价值链。

气化利用700至1200°C的高温将废物转化为由氢气和一氧化碳组成的合成气。这种合成气可以转化为各种化学物质和燃料。虽然比热解製程更为复杂,但它具有原料多样性极佳和多种产品转化途径。巴斯夫、陶氏和沙乌地基础工业公司等大型化学企业正在将塑胶废料衍生的原料整合到现有的蒸汽裂解过程中。

溶剂型技术(包括溶解和解聚製程)在较低温度(80–200°C)下运行,并能维持聚合物结构。某些材料的产率已超过95%,尤其适用于聚对苯二甲酸乙二醇酯(PET)、聚氨酯和聚酰胺。这些方法生产的单体符合原生级规格。 Carbios 和 Loop Industries 等公司已实现商业化规模运营,其设施每年可处理5,000至80,000吨难以回收的材料,例如纺织品和多层包装。

解聚技术专门针对缩聚物,例如PET、尼龙和聚碳酸酯,透过水解、糖酵解和甲醇解等製程断裂化学键,从而回收原始单体。这种方法实现了真正的闭环回收,回收的材料可以直接重新投入生产流程,而不会造成任何品质下降。

先进的化学回收技术被应用于各种终端市场,包括包装、汽车、建筑、电子和纺织。食品包装是关键应用领域,化学回收的聚合物能够满足机械回收难以达到的严格安全标准。联合利华的梦龙冰淇淋容器、玛氏宠物食品包装和雀巢饮料容器等知名品牌都已推出采用化学回收材料的产品。汽车产业也扩大采用化学回收材料用于引擎室和内装等应用,因为这些应用对性能的要求较高,因此价格也更高。电子产品製造商正在利用回收工程塑胶製造外壳和结构部件,而纺织公司则正在使用解聚聚酯製造服装和家具。

本报告深入探讨了全球先进化学回收市场,并透过对各行业的详细技术评估、产能预测、竞争基准分析和终端市场分析,提供了切实可行的见解。

本报告重点介绍以下191家领先的先进化学回收技术公司:

  • Aduro Clean Technologies
  • Advanced Plastic Purification International (APPI)
  • Aeternal Upcycling
  • Agilyx
  • Alpha Recyclage Composites
  • Alterra Energy
  • Ambercycle
  • Anellotech
  • Anhui Oursun Resource Technology
  • APChemi
  • Aquafil
  • ARCUS Greencycling
  • Arkema
  • Axens
  • BASF
  • Bcircular
  • BioBTX
  • Biofabrik Technologies
  • Birch Biosciences
  • Blest (Microengineer)
  • Blue Cycle
  • BlueAlp Technology
  • Borealis
  • Boston Materials
  • Braven Environmental
  • Breaking
  • Brightmark
  • Cadel Deinking
  • Carbios
  • Carboliq
  • Carbon Fiber Recycling
  • Cassandra Oil
  • CIRC
  • China Tianying
  • Chevron Phillips Chemical
  • Clariter
  • Clean Energy Enterprises
  • Clean Planet Energy
  • Corsair Group International
  • Covestro
  • CreaCycle
  • CuRe Technology
  • Cyclic Materials
  • Cyclize
  • DeepTech Recycling
  • DePoly
  • Dow Chemical Company
  • DyeRecycle
  • Eastman Chemical Company
  • Eco Fuel Technology
  • Ecopek
  • Ecoplasteam
  • Eeden
  • Emery Oleochemicals
  • Encina Development Group
  • Enerkem
  • Enespa
  • Enval
  • Environmental Solutions (Asia)
  • Epoch Biodesign
  • Equipolymers
  • ESTER Biotech
  • Evonik Industries
  • Evoralis Limited
  • Evrnu
  • Extracthive
  • ExxonMobil
  • Fairmat
  • Fulcrum BioEnergy
  • Futerro
  • Freepoint Eco-Systems
  • Fych Technologies
  • Garbo
  • Greenback Recycling Technologies
  • GreenMantra Technologies
  • Greyparrot
  • Gr3n
  • Guangdong Dongyue Chemical Technology
  • Handerek Technologies
  • Hanwha Solutions
  • Honeywell
  • Hyundai Chemical
  • Impact Recycling
  • Indaver
  • InEnTec
  • INEOS Styrolution
  • Infinited Fiber Company
  • Ioncell
  • Ioniqa Technologies
  • Itero Technologies
  • Jeplan
  • JFE Chemical Corporation
  • Kaneka Corporation
  • Khepra
  • Klean Industries
  • LanzaTech
  • Licella
  • Loop Industries
  • LOTTE Chemical

等等

目录

第一章:摘要整理

  • 市场概览
  • 技术版图
  • 市场推动因素与成长催化剂
  • 市场挑战与阻碍因素
  • 终端应用
  • 区域市场动态
  • 供应链与基础设施需求
  • 新兴技术
  • 市场现况与展望
  • 永续性评估

第二章:回收技术分类

第三章:导论

  • 全球塑胶生产
  • 塑胶的重要性与塑胶使用相关的问题
  • 生物基或可再生塑胶
  • 可生物降解和可堆肥塑胶
  • 塑胶污染
  • 政策与法规
  • 循环经济
  • 塑胶回收
  • 生命週期评估
  • 全球监理环境

第四章 先进(化学)回收市场

  • 市场推动因素与趋势
  • 市场挑战与限制
  • 产业新闻、融资与发展动态(2020-2025)
  • 加工能力
  • 依技术划分的全球聚合物再生产品需求(2022-2040)
  • 全球依技术和地区划分的再生聚合物产品需求(2022-2040)
  • 化学再生塑胶产品
  • 市场地图
  • 价值链
  • 先进化学回收製程的生命週期评估 (LCA)
  • 再生塑胶产量和成本
  • 市场分析与预测

第五章 先进(化学/原料)回收技术

  • 应用
  • 聚合物废弃物化学/先进机械回收的现有及新兴技术
  • 热处理工艺
  • 溶剂型回收技术
  • 其他先进化学回收技术
  • 热固性材料的先进回收
  • 与传统回收方法的比较
  • 新型先进机械技术
  • 环境影响评估
  • 新技术

第六章:材料分析

  • 塑料
  • 金属
  • 贱金属
  • 稀土元素
  • 电子废料
  • 纺织品
  • 合成纤维

第七章:最终产物分析

  • 化学原料
  • 燃料
  • 原料
  • 能源产品
  • 依区隔市场分析

第八章 供应链与基础设施

  • 原物料供应链
  • 产品经销网络
  • 基础设施差距分析:依地区划分
  • 循环经济整合

第九章:未来展望

  • 近期新兴技术
  • 市场情境(2030-2040)
  • 潜在市场颠覆者
  • 长期永续性评估

第十章:公司简介(191家公司简介)

第十一章:研究方法

章节第十二章:术语表

第十三章:参考文献

The advanced chemical recycling market represents a transformative approach to plastic waste management, converting end-of-life polymers back into their molecular building blocks or high-value chemical feedstocks. Unlike traditional mechanical recycling, which faces limitations with contaminated, multi-layer, or degraded plastics, chemical recycling technologies can process complex waste streams and produce virgin-quality materials suitable for demanding applications including food packaging, medical devices, and automotive components. The market is experiencing rapid expansion, with global chemical recycling capacity growing at compound annual growth rates exceeding 25%. This acceleration is driven by multiple converging factors: stringent regulatory frameworks like the European Union's Circular Economy Action Plan requiring increased recycled content, corporate sustainability commitments from major brand owners including Unilever, Nestle, and Procter & Gamble, and the fundamental need for more sophisticated recycling solutions capable of handling mixed plastic waste fractions that conventional technologies cannot process. The transition from linear to circular economy models has aligned economic and environmental incentives, with financial institutions mobilizing over $10 billion in specialized capital for circular plastic initiatives.

The market encompasses four primary technology categories, each with distinct advantages and applications. Pyrolysis, operating at temperatures between 370-550-degree-C, thermally decomposes polymers into pyrolysis oils, gases, and char, handling mixed plastic streams with relatively simple technology. Commercial facilities now operate at scales processing 100,000-500,000 tons annually, with companies like Brightmark, Plastic Energy, and Agilyx demonstrating viable integrated value chains.

Gasification, employing higher temperatures of 700-1,200-degree-C, converts waste into synthesis gas (syngas) comprising hydrogen and carbon monoxide, which can be transformed into numerous chemical products or fuels. While more complex than pyrolysis, gasification offers exceptional feedstock versatility and multiple product pathways, with leading chemical manufacturers including BASF, Dow, and SABIC integrating plastic waste-derived feedstocks into existing steam cracking operations.

Solvent-based technologies, including dissolution and depolymerization processes, operate at lower temperatures (80-200-degree-C) and preserve polymer structures, achieving yields exceeding 95% for certain materials. These methods demonstrate particular effectiveness for polyethylene terephthalate (PET), polyurethanes, and polyamides, producing monomers meeting virgin-grade specifications. Companies like Carbios and Loop Industries have achieved commercial-scale operations, with facilities processing 5,000-80,000 tons annually of difficult-to-recycle materials including textiles and multilayer packaging.

Depolymerization specifically targets condensation polymers like PET, nylon, and polycarbonate, breaking chemical bonds to recover original monomers through processes including hydrolysis, glycolysis, and methanolysis. This approach enables true closed-loop recycling, with recovered materials directly reintegrated into manufacturing without quality degradation.

Advanced chemical recycling serves diverse end markets across packaging, automotive, construction, electronics, and textiles. Food-grade packaging represents a critical application, with chemically recycled polymers meeting stringent safety requirements that mechanical recycling often cannot achieve. Major brands have launched products incorporating chemically recycled content, including Unilever's Magnum ice cream tubs, Mars pet food packaging, and Nestle beverage containers. The automotive sector increasingly specifies chemically recycled materials for under-hood components and interior applications where performance requirements justify premium pricing. Electronics manufacturers utilize recovered engineering plastics for housings and structural components, while textile companies employ depolymerized polyester for apparel and home furnishings.

Despite robust growth, the industry faces significant barriers including high initial capital costs ranging from $50-200 million for commercial-scale facilities, feedstock quality variability, and evolving regulatory frameworks. Energy requirements, particularly for pyrolysis and gasification, necessitate careful process optimization and renewable energy integration to achieve favorable carbon footprints. The market trajectory remains strongly positive, with capacity expansions, technological improvements, and supportive policies creating reinforcing feedback loops. As circular economy principles become mainstream and design-for-recyclability standards proliferate, advanced chemical recycling will transition from alternative technology to essential infrastructure within the global materials economy, fundamentally transforming how society values and manages plastic resources.

"The Global Advanced (Chemical) Recycling Market 2026-2040" delivers comprehensive analysis of the rapidly expanding chemical recycling industry, providing critical intelligence for stakeholders navigating the transition from linear to circular plastics economy. This definitive 450-page market intelligence report examines advanced recycling technologies transforming plastic waste management, including pyrolysis, gasification, solvent-based processes, and depolymerization systems projected to achieve market revenues exceeding $15 billion by 2040.

Advanced chemical recycling technologies are revolutionizing waste plastics management by converting end-of-life polymers into virgin-quality feedstocks, monomers, and chemical intermediates. Unlike mechanical recycling limited by contamination and degradation, chemical recycling processes handle mixed plastic waste streams, multilayer packaging, and contaminated materials, producing food-grade packaging, automotive components, and high-performance materials. This comprehensive market report analyzes technology readiness levels, commercial deployments, capacity expansions, and competitive landscape across thermal processes (pyrolysis and gasification), solvent-based technologies (dissolution and depolymerization), and emerging innovations including enzymatic recycling and plasma-assisted systems.

Market drivers propelling industry growth include stringent Extended Producer Responsibility (EPR) regulations, recycled content mandates in Europe, North America, and Asia, corporate sustainability commitments from Fortune 500 brands, and $10+ billion in circular economy investment. The European Union's Circular Economy Action Plan targeting 50% plastic packaging recycling by 2030, alongside carbon pricing mechanisms creating economic incentives for recycled materials, establishes regulatory frameworks accelerating commercial deployments. Major petrochemical manufacturers including BASF, Dow, SABIC, Shell, and TotalEnergies are integrating chemical recycling feedstocks into existing production infrastructure, validating technology scalability and market viability.

This strategic market intelligence report delivers actionable insights through detailed technology assessments, capacity forecasts, competitive benchmarking, and end-market analysis across packaging, automotive, construction, electronics, and textiles sectors. Comprehensive regional analysis examines Europe, North America, Asia-Pacific, South America, Africa, and Oceania, with polymer-specific demand forecasts for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyamides, and specialty polymers through 2040.

Report contents include:

  • Global market size and revenue projections by technology type (pyrolysis, gasification, dissolution, depolymerization)
  • Revenue forecasts by end-use application (packaging, automotive, construction, electronics, textiles)
  • Regional market analysis: Europe, North America, Asia-Pacific, South America, Africa, Oceania
  • Polymer demand segmentation: PE, PP, PET, PS, Nylon, specialty polymers
  • Capacity analysis: current operational facilities, planned expansions, technology-specific capacities
  • Price analysis: recycled plastic pricing versus virgin materials, cost competitiveness assessment
  • Investment landscape: funding trends, mergers & acquisitions, strategic partnerships (2020-2025)
  • Thermal Processes:
    • Pyrolysis: non-catalytic, catalytic, steam cracking, microwave-assisted, plasma pyrolysis
    • Process parameters, product yields, SWOT analysis, commercial applications
    • Polystyrene pyrolysis, tire recycling, biofuel production pathways
    • Co-pyrolysis of biomass and plastic wastes
    • Companies and operational capacities (130+ facilities profiled)
    • Gasification: technology overview, syngas production, methanol synthesis
    • Biomass gasification, syngas fermentation, thermochemical conversion
    • Multilayer packaging processing capabilities
    • SWOT analysis, companies and planned capacities
  • Solvent-Based Technologies:
    • Dissolution: selective dissolution, supercritical fluids, switchable solvents
    • Deep eutectic solvents (DES), ionic liquids, conventional organic solvents
    • Polyolefin dissolution systems, polystyrene recovery, PET solvolysis
    • Mixed polymer stream processing, solvent recovery and recycling systems
    • Economic optimization, life cycle assessment (LCA)
    • Commercial development, pilot plants, demonstration facilities
    • Delamination Technologies: multilayer packaging separation
    • Switchable Hydrophilicity Solvents (SHS), polyethylene-aluminum composites
    • Carton package processing, aluminum recovery methods
    • Economic and environmental benefits analysis
    • Chemical Depolymerization: hydrolysis, enzymolysis, methanolysis, glycolysis, aminolysis
    • Polymer-specific processes for PET, PU, PC, PA, PLA
    • Technology maturity, commercial deployments, capacity analysis
    • Companies and planned facilities
  • Emerging Technologies:
    • Hydrothermal Liquefaction (HTL) for multilayer packaging
    • Pyrolysis with in-line reforming
    • Carbon fiber recycling technologies
    • Thermoset recycling routes
    • Nano-catalysts and bio-catalysts applications
    • AI and machine learning optimization
  • Polymer Processing Methods:
    • Polyethylene (PE): recovery technologies, quality grades, processing parameters
    • Polypropylene (PP): chemical recycling methods, purity specifications
    • Polyethylene Terephthalate (PET): BHET upgrading, glycolysis, methanolysis
    • Polystyrene (PS): dissolution processes, monomer recovery
    • Polyamides (Nylon): depolymerization pathways, caprolactam recovery
    • Polycarbonate (PC), ABS, PVC: specialized processing techniquesPolyurethanes (PU): flexible and rigid foam recycling
  • Complex Waste Streams:
    • Multilayer packaging: barrier materials, food-grade applications
    • Mixed plastics: sorting technologies, selective separation
    • Composite materials: fiber-reinforced polymers, carbon fiber recovery
    • Electronic waste: circuit boards, displays, precious metals recovery
    • Automotive plastics: bumpers, dashboards, under-hood components
    • Construction materials: pipes, insulation, profiles
    • Textiles: natural fibers (cotton, wool, silk), synthetic fibers (polyester, nylon, acrylic)
    • Processing methods and recovery technologies
  • END PRODUCT ANALYSIS
    • Chemical Feedstocks
    • Fuels
    • Raw Materials
    • Energy Products:
  • Global Regulatory Landscape
  • Market Drivers
  • Market Challenges
  • Technology Readiness Levels (TRL) assessment: laboratory scale to commercial deployment
  • LIFE CYCLE ASSESSMENT (LCA)
  • Chemically recycled plastic products: commercial applications, brand partnerships
  • Market mapping: value chain analysis, competitive landscape
  • Industry news, funding and developments (2020-2025): M&A activity, capacity announcements
  • Strategic partnerships: petrochemical companies, brand owners, technology providers

The report profiles 191 leading companies pioneering advanced chemical recycling technologies, including:

  • Aduro Clean Technologies
  • Advanced Plastic Purification International (APPI)
  • Aeternal Upcycling
  • Agilyx
  • Alpha Recyclage Composites
  • Alterra Energy
  • Ambercycle
  • Anellotech
  • Anhui Oursun Resource Technology
  • APChemi
  • Aquafil
  • ARCUS Greencycling
  • Arkema
  • Axens
  • BASF
  • Bcircular
  • BioBTX
  • Biofabrik Technologies
  • Birch Biosciences
  • Blest (Microengineer)
  • Blue Cycle
  • BlueAlp Technology
  • Borealis
  • Boston Materials
  • Braven Environmental
  • Breaking
  • Brightmark
  • Cadel Deinking
  • Carbios
  • Carboliq
  • Carbon Fiber Recycling
  • Cassandra Oil
  • CIRC
  • China Tianying
  • Chevron Phillips Chemical
  • Clariter
  • Clean Energy Enterprises
  • Clean Planet Energy
  • Corsair Group International
  • Covestro
  • CreaCycle
  • CuRe Technology
  • Cyclic Materials
  • Cyclize
  • DeepTech Recycling
  • DePoly
  • Dow Chemical Company
  • DyeRecycle
  • Eastman Chemical Company
  • Eco Fuel Technology
  • Ecopek
  • Ecoplasteam
  • Eeden
  • Emery Oleochemicals
  • Encina Development Group
  • Enerkem
  • Enespa
  • Enval
  • Environmental Solutions (Asia)
  • Epoch Biodesign
  • Equipolymers
  • ESTER Biotech
  • Evonik Industries
  • Evoralis Limited
  • Evrnu
  • Extracthive
  • ExxonMobil
  • Fairmat
  • Fulcrum BioEnergy
  • Futerro
  • Freepoint Eco-Systems
  • Fych Technologies
  • Garbo
  • Greenback Recycling Technologies
  • GreenMantra Technologies
  • Greyparrot
  • Gr3n
  • Guangdong Dongyue Chemical Technology
  • Handerek Technologies
  • Hanwha Solutions
  • Honeywell
  • Hyundai Chemical
  • Impact Recycling
  • Indaver
  • InEnTec
  • INEOS Styrolution
  • Infinited Fiber Company
  • Ioncell
  • Ioniqa Technologies
  • Itero Technologies
  • Jeplan
  • JFE Chemical Corporation
  • Kaneka Corporation
  • Khepra
  • Klean Industries
  • LanzaTech
  • Licella
  • Loop Industries
  • LOTTE Chemical

and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
  • 1.2. Technology Landscape
  • 1.3. Market Drivers and Growth Catalysts
  • 1.4. Market Challenges and Constraints
  • 1.5. End-Use Applications
  • 1.6. Regional Market Dynamics
  • 1.7. Supply Chain and Infrastructure Requirements
  • 1.8. Emerging Technologies
  • 1.9. Market Scenarios and Outlook
  • 1.10. Sustainability Assessment

2. CLASSIFICATION OF RECYCLING TECHNOLOGIES

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment
  • 3.11. Global Regulatory Landscape
    • 3.11.1. EPR (Extended Producer Responsibility) Schemes by Region
    • 3.11.2. Recycled Content Mandates
    • 3.11.3. Carbon Pricing Mechanisms
    • 3.11.4. Food Contact Approvals and Standards
    • 3.11.5. International Trade Regulations (Basel Convention)
  • 3.12. Technology Readiness & Commercialization
    • 3.12.1. Technology Readiness Levels (TRL) Assessment
    • 3.12.2. Commercialization Pathways
    • 3.12.3. Pilot to Commercial Scale Transition
    • 3.12.4. Technology Licensing Models

4. THE ADVANCED (CHEMICAL) RECYCLING MARKET

  • 4.1. Market drivers and trends
    • 4.1.1. Growing Environmental Concerns
    • 4.1.2. Stringent Regulatory Policies
    • 4.1.3. Corporate Sustainability Initiatives
    • 4.1.4. Technological Advancements
    • 4.1.5. Circular Economy Adoption
  • 4.2. Market Challenges and Restraints
    • 4.2.1. High Initial Investment Costs
    • 4.2.2. Technical Challenges
    • 4.2.3. Infrastructure Limitations
    • 4.2.4. Technological Barriers
    • 4.2.5. Supply Chain Complexities
    • 4.2.6. Cost Competitiveness
  • 4.3. Industry news, funding and developments 2020-2025
  • 4.4. Capacities
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.5.1. PE
    • 4.5.2. PP
    • 4.5.3. PET
    • 4.5.4. PS
    • 4.5.5. Nylon
    • 4.5.6. Others
  • 4.6. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.6.1. Europe
    • 4.6.2. North America
    • 4.6.3. South America
    • 4.6.4. Asia
    • 4.6.5. Oceania
    • 4.6.6. Africa
  • 4.7. Chemically recycled plastic products
  • 4.8. Market map
  • 4.9. Value chain
  • 4.10. Life Cycle Assessments (LCA) of advanced chemical recycling processes
    • 4.10.1. PE
    • 4.10.2. PP
    • 4.10.3. PET
  • 4.11. Recycled plastic yield and cost
    • 4.11.1. Plastic yield of each chemical recycling technologies
    • 4.11.2. Prices
  • 4.12. Market Analysis & Forecasts
    • 4.12.1. Market Size and Revenue Forecasts 2026-2040
    • 4.12.2. Revenue by Technology Type
    • 4.12.3. Revenue by End-Use Application

5. ADVANCED (CHEMICAL OR FEEDSTOCK) RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • 5.3. Thermal Processes
    • 5.3.1. Pyrolysis
      • 5.3.1.1. Technical Process and Variations
      • 5.3.1.2. Non-catalytic
      • 5.3.1.3. Catalytic
      • 5.3.1.4. Steam Cracking of Polymer Waste
        • 5.3.1.4.1. Technology Overview
        • 5.3.1.4.2. Process Conditions and Product Yields
        • 5.3.1.4.3. Integration with Refineries
        • 5.3.1.4.4. Commercial Applications
        • 5.3.1.4.5. Polystyrene pyrolysis
        • 5.3.1.4.6. Pyrolysis for production of bio fuel
        • 5.3.1.4.7. Used tires pyrolysis
          • 5.3.1.4.7.1. Conversion to biofuel
        • 5.3.1.4.8. Co-pyrolysis of biomass and plastic wastes
      • 5.3.1.5. Commercial Development and Investment
      • 5.3.1.6. Challenges and Considerations
      • 5.3.1.7. SWOT analysis
      • 5.3.1.8. Companies and capacities
    • 5.3.2. Gasification
      • 5.3.2.1. Technology overview
        • 5.3.2.1.1. Syngas conversion to methanol
        • 5.3.2.1.2. Biomass gasification and syngas fermentation
        • 5.3.2.1.3. Biomass gasification and syngas thermochemical conversion
      • 5.3.2.2. Applications and Potential
      • 5.3.2.3. Multilayer Packaging
      • 5.3.2.4. SWOT analysis
      • 5.3.2.5. Companies and capacities (current and planned)
  • 5.4. Solvent-Based Recycling Technologies
    • 5.4.1. Dissolution
      • 5.4.1.1. Technology overview
      • 5.4.1.2. Selective Dissolution and Precipitation
      • 5.4.1.3. Supercritical Fluid Technologies
      • 5.4.1.4. Advanced Solvent Systems for Mixed Plastics
      • 5.4.1.5. Switchable Solvent Technologies
      • 5.4.1.6. SWOT analysis
      • 5.4.1.7. Companies and capacities (current and planned)
    • 5.4.2. Delamination Technologies for Multilayer Packaging
      • 5.4.2.1. Technical Approaches
      • 5.4.2.2. Switchable Hydrophilicity Solvents (SHS)
      • 5.4.2.3. Chemical Recycling of "Polyal" (Polyethylene-Aluminum Composites)
      • 5.4.2.4. Delamination Process for Carton Packages
      • 5.4.2.5. Aluminum Recovery Methods
      • 5.4.2.6. Polyethylene Purification and Recycling
      • 5.4.2.7. Economic and Environmental Benefits
      • 5.4.2.8. Novel Approaches
    • 5.4.3. Solvent-Based Plastic Recycling
      • 5.4.3.1. Solvent Selection and Classification
        • 5.4.3.1.1. Conventional Organic Solvents
        • 5.4.3.1.2. Ionic Liquids
        • 5.4.3.1.3. Supercritical Fluids
        • 5.4.3.1.4. Deep Eutectic Solvents (DES)
      • 5.4.3.2. Polymer-Specific Solvent Recycling
        • 5.4.3.2.1. Polyolefin Dissolution Systems
        • 5.4.3.2.2. Polystyrene Solvent Recovery
        • 5.4.3.2.3. PET and Polyester Solvolysis
          • 5.4.3.2.3.1. BHET to Cyclohexanedimethanol (CHDM)
        • 5.4.3.2.4. Mixed Polymer Stream Processing
      • 5.4.3.3. Solvent Recovery and Recycling Systems
        • 5.4.3.3.1. Distillation and Purification
        • 5.4.3.3.2. Membrane Separation Technologies
        • 5.4.3.3.3. Economic Optimization
      • 5.4.3.4. Environmental Considerations
        • 5.4.3.4.1. Solvent Emissions Control
        • 5.4.3.4.2. Waste Stream Management
        • 5.4.3.4.3. Life Cycle Assessment of Solvent Systems
      • 5.4.3.5. Commercial Development and Scale-Up
        • 5.4.3.5.1. Pilot and Demonstration Plants
        • 5.4.3.5.2. Industrial Implementation Challenges
        • 5.4.3.5.3. Economic Viability Assessment
    • 5.4.4. Chemical Depolymerisation
      • 5.4.4.1. Hydrolysis
        • 5.4.4.1.1. Technology overview
        • 5.4.4.1.2. SWOT analysis
      • 5.4.4.2. Enzymolysis
        • 5.4.4.2.1. Technology overview
        • 5.4.4.2.2. SWOT analysis
      • 5.4.4.3. Methanolysis
        • 5.4.4.3.1. Technology overview
        • 5.4.4.3.2. SWOT analysis
      • 5.4.4.4. Glycolysis
        • 5.4.4.4.1. Technology overview
        • 5.4.4.4.2. SWOT analysis
      • 5.4.4.5. Aminolysis
        • 5.4.4.5.1. Technology overview
        • 5.4.4.5.2. SWOT analysis
      • 5.4.4.6. Companies and capacities (current and planned)
  • 5.5. Other advanced chemical recycling technologies
    • 5.5.1. Hydrothermal Liquefaction (HTL)
      • 5.5.1.1. Technical Mechanisms
      • 5.5.1.2. Performance and Application
      • 5.5.1.3. Commercial Development
      • 5.5.1.4. Hydrothermal Liquefaction Targeting Multilayer Packaging Waste
    • 5.5.2. Pyrolysis with in-line reforming
    • 5.5.3. Microwave-assisted pyrolysis
    • 5.5.4. Plasma pyrolysis
    • 5.5.5. Plasma gasification
    • 5.5.6. Carbon fiber recycling
      • 5.5.6.1. Processes
      • 5.5.6.2. Companies
  • 5.6. Advanced recycling of thermoset materials
    • 5.6.1. Thermal recycling
      • 5.6.1.1. Energy Recovery Combustion
      • 5.6.1.2. Anaerobic Digestion
      • 5.6.1.3. Pyrolysis Processing
      • 5.6.1.4. Microwave Pyrolysis
    • 5.6.2. Solvolysis
    • 5.6.3. Catalyzed Glycolysis
    • 5.6.4. Alcoholysis and Hydrolysis
    • 5.6.5. Ionic liquids
    • 5.6.6. Supercritical fluids
    • 5.6.7. Plasma
    • 5.6.8. Chemical Vapor Infiltration (CVI)
    • 5.6.9. Companies
  • 5.7. Comparison with Traditional Recycling Methods
    • 5.7.1. Mechanical Recycling Limitations
    • 5.7.2. Energy Efficiency Comparison
    • 5.7.3. Quality of Output Comparison
    • 5.7.4. Cost Analysis
  • 5.8. Emerging Advanced Mechanical Technologies
    • 5.8.1. Chemical Upcycling Integration
    • 5.8.2. Computational Modelling
    • 5.8.3. Hybrid Approaches
  • 5.9. Environmental Impact Assessment
    • 5.9.1. Carbon Footprint Analysis
    • 5.9.2. Energy Consumption Assessment
    • 5.9.3. Waste Reduction Potential
      • 5.9.3.1. Wastewater
      • 5.9.3.2. Atmospheric Emissions
      • 5.9.3.3. Catalyst and Media Waste
      • 5.9.3.4. Maintenance and Cleaning Waste
      • 5.9.3.5. Waste Management Approaches
      • 5.9.3.6. Regulatory Considerations and Classification
      • 5.9.3.7. Comparative Waste Production
      • 5.9.3.8. Environmental Impact and Future Directions
    • 5.9.4. Sustainability Metrics
  • 5.10. Emerging Technologies
    • 5.10.1. AI and Machine Learning Applications
      • 5.10.1.1. Sorting Optimization
      • 5.10.1.2. Process Control
      • 5.10.1.3. Quality Prediction
      • 5.10.1.4. Maintenance Prediction
    • 5.10.2. Robotics in Sorting
      • 5.10.2.1. Vision Systems
      • 5.10.2.2. Picking Mechanisms
      • 5.10.2.3. Control Systems
      • 5.10.2.4. Integration Methods
    • 5.10.3. Novel Catalyst Development
      • 5.10.3.1. Nano-catalysts
      • 5.10.3.2. Bio-catalysts
      • 5.10.3.3. Hybrid Catalysts

6. MATERIALS ANALYSIS

  • 6.1. Plastics
    • 6.1.1. Polyethylene (PE)
      • 6.1.1.1. HDPE Analysis
      • 6.1.1.2. LLDPE Analysis
      • 6.1.1.3. Recovery Methods
    • 6.1.2. Polypropylene (PP)
      • 6.1.2.1. Homopolymer
      • 6.1.2.2. Copolymer
      • 6.1.2.3. Processing Methods
      • 6.1.2.4. Quality Grades
    • 6.1.3. Polyethylene Terephthalate (PET)
      • 6.1.3.1. Bottle Grade
      • 6.1.3.2. Fiber Grade
      • 6.1.3.3. Film Grade
      • 6.1.3.4. Recovery Technologies
        • 6.1.3.4.1. Advanced BHET Upgrading to Specialty Chemicals
          • 6.1.3.4.1.1. Guerbet Reaction Pathways
          • 6.1.3.4.1.2. Biorefinery Integration Approaches
    • 6.1.4. Polystyrene (PS)
      • 6.1.4.1. General Purpose PS
      • 6.1.4.2. High Impact PS
      • 6.1.4.3. Expanded PS
      • 6.1.4.4. Processing Methods
    • 6.1.5. Other Plastics
      • 6.1.5.1. PVC
      • 6.1.5.2. PC
      • 6.1.5.3. ABS
      • 6.1.5.4. Mixed Plastics
  • 6.2. Metals
    • 6.2.1. Precious Metals
      • 6.2.1.1. Gold
      • 6.2.1.2. Silver
      • 6.2.1.3. Platinum Group Metals
      • 6.2.1.4. Recovery Methods
  • 6.3. Base Metals
    • 6.3.1. Copper
    • 6.3.2. Aluminium
    • 6.3.3. Steel
    • 6.3.4. Processing Technologies
  • 6.4. Rare Earth Elements
    • 6.4.1. Light REEs
    • 6.4.2. Heavy REEs
    • 6.4.3. Extraction Methods
  • 6.5. Electronic Waste
    • 6.5.1. Circuit Boards
      • 6.5.1.1. PCB Types
      • 6.5.1.2. Component Separation
      • 6.5.1.3. Metal Recovery
      • 6.5.1.4. Waste Management
    • 6.5.2. Batteries
      • 6.5.2.1. Lithium-ion
      • 6.5.2.2. Lead-acid
      • 6.5.2.3. Nickel-based
      • 6.5.2.4. Recovery Processes
    • 6.5.3. Displays
      • 6.5.3.1. LCD
      • 6.5.3.2. LED
      • 6.5.3.3. OLED
      • 6.5.3.4. Material Recovery
    • 6.5.4. Other Components
      • 6.5.4.1. Capacitors
      • 6.5.4.2. Resistors
      • 6.5.4.3. Semiconductors
      • 6.5.4.4. Connectors
  • 6.6. Textiles
    • 6.6.1. Natural Fibers
    • 6.6.2. Cotton
    • 6.6.3. Wool
    • 6.6.4. Silk
    • 6.6.5. Processing Methods
  • 6.7. Synthetic Fibers
    • 6.7.1. Polyester
    • 6.7.2. Nylon
    • 6.7.3. Acrylic
    • 6.7.4. Recovery Technologies

7. END PRODUCT ANALYSIS

  • 7.1. Chemical Feedstocks
    • 7.1.1. Monomers
      • 7.1.1.1. Market Drivers for Monomer Value Enhancement
      • 7.1.1.2. Performance Premium Applications
      • 7.1.1.3. Catalytic Upgrading Platforms
        • 7.1.1.3.1. Heterogeneous Catalyst Development
        • 7.1.1.3.2. Process Intensification Technologies
        • 7.1.1.3.3. Biocatalytic Monomer Enhancement
          • 7.1.1.3.3.1. Enzyme Engineering for Recycling Applications
          • 7.1.1.3.3.2. Metabolic Engineering for Specialty Chemicals
    • 7.1.2. Oligomers
    • 7.1.3. Specialty Chemicals
  • 7.2. Fuels
    • 7.2.1. Diesel
    • 7.2.2. Gasoline
    • 7.2.3. Synthetic Gas
  • 7.3. Raw Materials
    • 7.3.1. Recycled Plastics
    • 7.3.2. Recovered Metals
    • 7.3.3. Other Materials
  • 7.4. Energy Products
    • 7.4.1. Electricity
    • 7.4.2. Heat
    • 7.4.3. Biofuels
  • 7.5. Market Analysis by Sector
    • 7.5.1. Packaging (rigid, flexible, multilayer)
    • 7.5.2. Automotive and Transportation
    • 7.5.3. Building and Construction
    • 7.5.4. Electronics and Electrical
    • 7.5.5. Textiles and Apparel
    • 7.5.6. Consumer Goods
    • 7.5.7. Medical and Healthcare
    • 7.5.8. Agriculture

8. SUPPLY CHAIN AND INFRASTRUCTURE

  • 8.1. Feedstock Supply Chain
    • 8.1.1. Waste Collection Systems
    • 8.1.2. Sorting and Pre-processing Infrastructure
    • 8.1.3. Quality Standards for Feedstock
  • 8.2. Product Distribution Networks
  • 8.3. Infrastructure Gap Analysis by Region
  • 8.4. Circular Economy Integration

9. FUTURE OUTLOOK

  • 9.1. Emerging Technologies on the Horizon
    • 9.1.1. Biological/Enzymatic Recycling
    • 9.1.2. Plasma-Based Technologies
      • 9.1.2.1. Plasma Technology Types
    • 9.1.3. AI and Digital Twin Applications
      • 9.1.3.1. AI Applications
  • 9.2. Market Scenarios 2030-2040
    • 9.2.1. Best Case Scenario
    • 9.2.2. Base Case Scenario
    • 9.2.3. Conservative Scenario
  • 9.3. Potential Market Disruptors
    • 9.3.1. Negative Disruptions
    • 9.3.2. Wild Card Scenarios
  • 9.4. Long-term Sustainability Assessment
    • 9.4.1. Environmental Performance
    • 9.4.2. Economic Sustainability
    • 9.4.3. Social Sustainability
    • 9.4.4. Circular Economy Impact

10. COMPANY PROFILES (191 company profiles)

11. RESEARCH METHODOLOGY

12. GLOSSARY OF TERMS

13. REFERENCES

List of Tables

  • Table 1. Types of recycling
  • Table 2. Issues related to the use of plastics
  • Table 3. Type of biodegradation
  • Table 4. Overview of the recycling technologies
  • Table 5. Polymer types, use, and recovery
  • Table 6. Composition of plastic waste streams
  • Table 7. Comparison of mechanical and advanced chemical recycling
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution)
  • Table 10. EPR (Extended Producer Responsibility) Schemes by Region
  • Table 11. Recycled content mandates
  • Table 12. Carbon pricing mechanisms
  • Table 13. Food Contact Approvals and Standards
  • Table 14. Technology Readiness Levels (TRL) Assessment
  • Table 15. Advanced chemical recycling technologies commercialization pathways
  • Table 16. Pilot to Commercial Scale Transition
  • Table 17. Technology Licensing Models
  • Table 18. Market drivers and trends in the advanced chemical recycling market
  • Table 19. Global regulations driving plastics recycling
  • Table 20. Corporate Sustainability Initiatives
  • Table 21. Technological Advancements
  • Table 22. Technical Challenges
  • Table 23. Technological Barriers
  • Table 24. Cost Competitiveness Analysis
  • Table 25. Advanced (chemical) recycling industry news, funding and developments 2020-2025
  • Table 26. Advanced chemical recycling capacities, by technology
  • Table 27. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Table 28. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Table 29. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Table 30. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Table 31. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Table 32. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*
  • Table 33. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Table 34. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Table 35. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Table 36. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Table 37. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Table 38. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Table 39. Example chemically recycled plastic products
  • Table 40. Life Cycle Assessments (LCA) of Advanced chemical recycling Processes
  • Table 41. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE)
  • Table 42. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP)
  • Table 43. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET)
  • Table 44. Plastic yield of each chemical recycling technologies
  • Table 45. Chemically recycled plastics prices in USD
  • Table 46. Advanced Recycling Market Size and Revenue Forecasts 2026-2040 (Millions USD)
  • Table 47. Advanced Recycling Revenue Forecasts by Technology Type 2026-2040 (Millions USD)
  • Table 48. Advanced Recycling Revenue Forecasts by End-Use Application 2026-2040 (Millions USD)
  • Table 49. Applications of chemically recycled materials
  • Table 50. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • Table 51. Pyrolysis Technology Comparison for Multilayer Packaging Processing
  • Table 52. Summary of non-catalytic pyrolysis technologies
  • Table 53. Summary of catalytic pyrolysis technologies
  • Table 54. Steam Cracking Technology Specifications for Polymer Waste Processing
  • Table 55. Product Yields and Quality Specifications for Polymer Waste Steam Cracking
  • Table 56. Refinery Integration Requirements for Polymer Waste Steam Cracking
  • Table 57. Commercial Steam Cracking Applications for Polymer Waste Processing
  • Table 58. Summary of pyrolysis technique under different operating conditions
  • Table 59. Biomass materials and their bio-oil yield
  • Table 60. Biofuel production cost from the biomass pyrolysis process
  • Table 61. Pyrolysis companies and plant capacities, current and planned
  • Table 62. Summary of gasification technologies
  • Table 63. Gasification Technology Specifications for Multilayer Packaging Waste
  • Table 64. Advanced recycling (Gasification) companies
  • Table 65. Summary of dissolution technologies
  • Table 66. Dissolution Technology Performance for Multilayer Packaging Recycling
  • Table 67. Switchable Solvent Technologies
  • Table 68. Advanced recycling (Dissolution) companies
  • Table 69. Delamination Method Performance for Multilayer Packaging Separation
  • Table 70. Aluminum Recovery Methods
  • Table 71. Economic and Environmental Benefits of Delamination Technologies
  • Table 72. Novel Approaches in Delamination Technologies - Comprehensive Analysis
  • Table 73. Primary Solvent Categories and Applications
  • Table 74. Process Economics and Operating Parameters
  • Table 75. Solvent Recovery and Recycling Systems
  • Table 76. Polyolefin Dissolution Systems
  • Table 77. Solvent System Performance Comparison
  • Table 78. Membrane separation technologies
  • Table 79. Life cycle assessment (LCA) of solvent systems
  • Table 80. Commercial Development and Scale-Up
  • Table 81. Pilot and Demonstration Plants
  • Table 82. Industrial Implementation Challenges
  • Table 83. Technical Implementation Barriers
  • Table 84. Economic Implementation Barriers
  • Table 85. Economic Viability Assessment
  • Table 86. Technology-Specific Economics
  • Table 87. Depolymerisation processes for PET, PU, PC and PA, products and yields
  • Table 88. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 89. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 90. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 91. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 92. Summary of aminolysis technologies
  • Table 93. Advanced recycling (Depolymerisation) companies and capacities (current and planned)
  • Table 94. Hydrothermal Liquefaction Operating Parameters for Multilayer Packaging
  • Table 95. Overview of Pyrolysis with in-line reforming for advanced chemical recycling
  • Table 96. Overview of microwave-assisted pyrolysis for advanced chemical recycling
  • Table 97. Overview of plasma pyrolysis for advanced chemical recycling
  • Table 98. Overview of plasma gasification for advanced chemical recycling
  • Table 99. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages
  • Table 100. Retention rate of tensile properties of recovered carbon fibres by different recycling processes
  • Table 101. Recycled carbon fiber producers, technology and capacity
  • Table 102. Advanced Recycling Technologies for Specialized Packaging Applications
  • Table 103. Current thermoset recycling routes
  • Table 104. Companies developing advanced thermoset recycing routes
  • Table 105. Comparison of Advanced Chemical Recycling with Traditional Recycling Methods
  • Table 106. Energy Efficiency Comparison: Advanced Chemical Recycling vs. Mechanical Recycling
  • Table 107. Quality of Output Comparison
  • Table 108. Cost Analysis of advanced plastic recycling versus traditional recycling methods
  • Table 109. Carbon Footprint Analysis
  • Table 110. Energy Consumption Assessment
  • Table 111. Sustainability Metrics
  • Table 112. AI and Machine Learning Applications
  • Table 113. Types of Nano-catalysts
  • Table 114. Types of bio-catalysts
  • Table 115. Advanced polyethylene recovery methods
  • Table 116. Polypropylene processing methods for chemical recycling
  • Table 117. PP Quality Grades from Chemical Recycling
  • Table 118. Advanced PET recovery technologies
  • Table 119. BHET Upgrading Technologies: Process Comparison
  • Table 120. Advanced chemical recycling of metals
  • Table 121. Precious metals recovery methods
  • Table 122. Advanced processing technologies for base metal recycling
  • Table 123. Rare Earth Elements Extraction Methods
  • Table 124. Recovery Processes for Batteries
  • Table 125. Advanced technologies for materials recovery in displays
  • Table 126. Processing Methods for Natural Fiber Recycling
  • Table 127. Recovery Technologies for Synthetic Fibers
  • Table 128. Monomers from chemical recycling
  • Table 129. Oligomers from advanced recycling
  • Table 130. Advanced chemical recycling for Packaging (rigid, flexible, multilayer)
  • Table 131. Advanced chemical recycling for Automotive and Transportation
  • Table 132. Advanced chemical recycling for Building and Construction
  • Table 133. Advanced chemical recycling for Electronics and Electrical
  • Table 134. Advanced chemical recycling for Textiles and Apparel
  • Table 135. Advanced chemical recycling for Consumer Goods
  • Table 136. Advanced chemical recycling for Medical and Healthcare
  • Table 137. Advanced chemical recycling for Agriculture
  • Table 138. Collection System Types
  • Table 139. Advanced Sorting Technologies
  • Table 140. Feedstock Quality Requirements by Technology:
  • Table 141. Infrastructure Gap Analysis by Region
  • Table 142. Enzyme Classes and Applications/
  • Table 143. AI Application Areas

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes
  • Figure 2. Coca-Cola PlantBottle-R
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives
  • Figure 5. The circular plastic economy
  • Figure 6. Current management systems for waste plastics
  • Figure 7. Overview of the different circular pathways for plastics
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Figure 20. Market map for advanced chemical recycling
  • Figure 21. Value chain for advanced chemical recycling market
  • Figure 22. Advanced Recycling Market Size and Revenue Forecasts 2026-2040 (Millions USD)
  • Figure 23. Advanced Recycling Revenue Forecasts by End-Use Application 2026-2040 (Millions USD)
  • Figure 24. Schematic layout of a pyrolysis plant
  • Figure 25. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 26. Schematic for Pyrolysis of Scrap Tires
  • Figure 27. Used tires conversion process
  • Figure 28. SWOT analysis-pyrolysis for advanced recycling
  • Figure 29. Total syngas market by product in MM Nm3/h of Syngas
  • Figure 30. Overview of biogas utilization
  • Figure 31. Biogas and biomethane pathways
  • Figure 32. SWOT analysis-gasification for advanced recycling
  • Figure 33. SWOT analysis-dissoluton for advanced recycling
  • Figure 34. Products obtained through the different solvolysis pathways of PET, PU, and PA
  • Figure 35. SWOT analysis-Hydrolysis for advanced chemical recycling
  • Figure 36. SWOT analysis-Enzymolysis for advanced chemical recycling
  • Figure 37. SWOT analysis-Methanolysis for advanced chemical recycling
  • Figure 38. SWOT analysis-Glycolysis for advanced chemical recycling
  • Figure 39. SWOT analysis-Aminolysis for advanced chemical recycling
  • Figure 40. Alterra's Akron Plant in Ohio
  • Figure 41. ChemCyclingTM prototypes
  • Figure 42. ChemCycling circle by BASF
  • Figure 43. Recycled carbon fibers obtained through the R3FIBER process
  • Figure 44. Cassandra Oil process
  • Figure 45. CuRe Technology process
  • Figure 46. MoReTec
  • Figure 47. Chemical decomposition process of polyurethane foam
  • Figure 48. OMV ReOil process
  • Figure 49. Schematic Process of Plastic Energy's TAC Chemical Recycling
  • Figure 50. Easy-tear film material from recycled material
  • Figure 51. Polyester fabric made from recycled monomers
  • Figure 52. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right)
  • Figure 53. Teijin Frontier Co., Ltd. Depolymerisation process
  • Figure 54. The Velocys process
  • Figure 55. The Proesa-R Process
  • Figure 56. Worn Again products