航天工业人工智能/机器学习解决方案
市场调查报告书
商品编码
1296943

航天工业人工智能/机器学习解决方案

Artificial Intelligence/Machine Learning Solutions in the Space Industry

出版日期: | 出版商: Frost & Sullivan | 英文 44 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

响应式太空态势感知推动先进算法、增强型卫星操作、自主太空探索和下一代太空生态系统

人工智能 (AI) 和机器学习 (ML) 在航天工业中的集成有可能显着增强卫星操作、太空探索和太空态势感知等。 本报告探讨了人工智能/机器学习对航天工业各个方面的影响,包括卫星网络管理、卫星健康管理、姿态和轨道控制系统(AOCS)以及空间天气监测。 此外,它还涵盖了AI/ML技术以及在卫星上安装AI/ML技术的挑战,例如处理能力和环境限制。

随着航天工业的扩张,特别是低地球轨道 (LEO) 卫星星座的出现,人工智能/机器学习技术正在帮助管理复杂的卫星网络。 通过启用考虑多个属性的高效路由程序,AI/ML 应用程序可确保高质量的服务和低延迟。 此外,人工智能/机器学习提供的更多自主权减少了对地面站可用性的依赖,简化了卫星网络管理并优化了资源利用率。

人工智能/机器学习技术还通过最大限度地减少对地面运营商的依赖并提供更准确的故障预测,在卫星健康管理领域显示出前景。 有效分析海量数据集并提供实时故障预测的能力有可能实施及时的缓解措施并延长卫星组件的生命週期。 儘管仍处于发展的早期阶段,人工智能/机器学习技术有望通过加强卫星健康管理来显着提高太空任务的安全性和成功率。

最后,AI/ML 在 AOCS 和空间天气监测中的应用比传统方法具有显着优势。 基于人工智能的星识别能够实现稳健、快速、准确的姿态确定,人工智能增强的空间天气监测有助于全面的数据收集和快速的信息传播。 随着航天工业的不断发展,人工智能/机器学习技术将在解决与航天操作、探索和安全相关的日益复杂性和挑战方面发挥越来越重要的作用。

内容

战略问题

  • 为什么成长越来越难?
  • 战略要务 8 (TM)
  • 人工智能 (AI) 和机器学习 (ML) 三大战略要务对航天工业的影响
  • 增长机会推动增长管道引擎(TM)。

增长机会分析

  • 卫星有效载荷的人工智能应用
  • 卫星平台人工智能应用
  • 人工智能技术在航天工业中的应用
  • 航天工业中的监督学习技术
  • 航天工业中的半监督、无监督强化学习技术
  • 航天工业中的神经网络 (NN) 技术
  • 航天工业中的自然语言处理、专家系统和视觉技术
  • 航天工业中的机器人
  • 人工智能在卫星应用的成功案例
  • 星载人工智能应用的挑战——太空环境
  • 星载人工智能应用的挑战 - 卫星设计
  • 人工智能在航天工业中的应用 - 卫星网络管理
  • 人工智能在航天工业中的应用 - 卫星健康管理
  • 人工智能在航天工业中的应用 - 姿态和轨道控制系统 (AOCS)
  • 驱动程序
  • 促进因素分析
  • 限制增长的因素
  • 生长抑制因素分析

增长机会宇宙

  • 增长机会 1:空间碎片跟踪和缓解
  • 增长机会2:航天器自主和导航
  • 增长机会3:太空探索和资源探索
  • 图表列表
  • 免责声明
简介目录
Product Code: K8BA-66

Advanced Algorithms, Enhanced Satellite Operations, Autonomous Space Exploration, and Responsive Space Situational Awareness to Propel the Next generation Space Ecosystem

The integration of artificial intelligence (AI) and machine learning (ML) within the space industry has the potential to significantly enhance satellite operations, space exploration, and space situational awareness, among other areas. This report investigates the impact of AI/ML on various aspects of the space industry, including satellite network management, satellite health management, attitude and orbit control systems (AOCS), and space weather monitoring. Additionally, the report addresses AI/ML techniques and challenges associated with implementing AI/ML technologies onboard satellites, such as processing capabilities and environmental constraints.

As the space industry expands, particularly with the emergence of low-Earth orbit (LEO) satellite constellations, AI/ML technologies have become instrumental in managing complex satellite networks. By enabling efficient routing procedures that consider multiple attributes, AI/ML applications ensure high-quality service and low latency. Furthermore, the increased autonomy provided by AI/ML reduces the reliance on ground station availability, thus streamlining satellite network management and optimizing resource utilization.

AI/ML technologies also hold promise in the field of satellite health management by minimizing dependence on ground operators and providing more accurate fault predictions. The capacity to efficiently analyze extensive datasets and offer real-time fault predictions allows for the implementation of timely mitigation measures and the potential extension of satellite component lifecycles. Although still in the early stages of development, AI/ML technologies are poised to significantly improve the safety and success of space missions through enhanced satellite health management.

Lastly, AI/ML applications in AOCS and space weather monitoring offer substantial advantages over traditional methods. AI-based star identification enables robust, rapid, and precise attitude determination, while AI-enhanced space weather monitoring facilitates comprehensive data collection and expeditious information dissemination. As the space industry continues to evolve, AI/ML technologies are set to play an increasingly crucial role in addressing the growing complexities and challenges associated with space operations, exploration, and security.

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on Artificial Intelligence (AI) and Machine Learning (ML) in the Space Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™

Growth Opportunity Analysis

  • AI Applications for Satellite Payloads
  • AI Applications for Satellite Platforms
  • AI Techniques in the Space Industry
  • Supervised Learning Techniques in the Space Industry
  • Semi-supervised, Unsupervised, and RL Techniques in the Space Industry
  • Neural Network (NN) Techniques in the Space Industry
  • NLP, Expert Systems, and Vision Techniques in the Space Industry
  • Robotics in the Space Industry
  • Successful Applications for AI Onboard Satellite Payloads
  • Challenges for AI Application Onboard Satellites-Space Environment
  • Challenges for AI Application Onboard Satellites-Satellite Design
  • AI Application in the Space Industry-Satellite Network Management
  • AI Application in the Space Industry-Satellite Health Management
  • AI Application in the Space Industry-Attitude and Orbit Control System (AOCS)
  • Growth Drivers
  • Growth Driver Analysis
  • Growth Restraints
  • Growth Restraint Analysis

Growth Opportunity Universe

  • Growth Opportunity 1: Space Debris Tracking and Mitigation
  • Growth Opportunity 2: Spacecraft Autonomy and Navigation
  • Growth Opportunity 3: Space Exploration and Resource Identification
  • List of Exhibits
  • Legal Disclaimer