SLAM技术在影像应用中的成长机会分析
市场调查报告书
商品编码
1415520

SLAM技术在影像应用中的成长机会分析

Growth Opportunity Analysis of SLAM Technology in Imaging Applications

出版日期: | 出版商: Frost & Sullivan | 英文 55 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

测绘、测量和基于定位的服务和应用将改变行业

成像应用中的同步立体定位映射 (SLAM) 技术依赖感测器技术和软体演算法。 SLAM 使自动驾驶汽车、机器人和无人机等自主系统能够同时绘製周围环境的地图、导航、高效操作并估计其在地图上的位置。 SLAM 利用惯性测量单元、摄影机系统和光达来收集周围环境的资料。透过分析感测器资料,SLAM 演算法创建环境地图并估计位置和方向参数。演算法很复杂,计算成本也很高,但近几十年来取得了巨大进步。

SLAM 是广泛影像处理应用的重要技术,包括机器人、扩增实境(AR)、虚拟实境 (VR) 和自动驾驶汽车,而且市场正在迅速扩大。 SLAM 使城市规划者、施工经理和测量员能够轻鬆创建具有所需精度的大型景观 3D 地图。

本次调查的内容

  • SLAM技术在影像应用中概述
  • 影像应用中SLAM演算法的类型
  • SLAM演算法在影像处理应用上的比较分析
  • 感测器融合对基于 SLAM 的成像系统的影响和意义
  • SLAM技术在医学影像、卫星、机器人和AR/VR应用的影响分析
  • SLAM 技术的产业新使用案例
  • 主要成长机会、经营模式与未来方向

目录

战略问题

  • 为什么成长如此困难?
  • The Strategic Imperative 8(TM)
  • 同步立体定位 (SLAM) 产业三大策略挑战的影响
  • 成长机会是Growth Pipeline Engine(TM)
  • 调查方法
  • 成长环境
  • 技术吸引力仪表板

成长机会分析

  • 分析范围
  • 影像应用的SLAM演算法分割
  • 生长促进因子
  • 成长抑制因素

技术状况评估

  • SLAM技术在影像应用中概述
  • 用于成像应用的 SLAM 演算法类型
  • 各种SLAM演算法的优缺点
  • 为成像应用选择 SLAM 演算法时要考虑的因素
  • 影像处理应用的SLAM演算法比较分析
  • SLAM 感测器融合
  • SLAM 绩效指标 - 准备、评估和测试阶段
  • 专利检索的优先领域
  • 资金筹措计画及重点领域

SLAM技术在影像应用的产业影响分析

  • SLAM技术在卫星和医学影像应用中的影响分析
  • 新兴使用案例- 卫星和医学成像中的 SLAM 技术
  • SLAM技术在机器人应用的应用
  • SLAM技术在机器人应用中的影响分析
  • 新使用案例- 机器人 SLAM 技术
  • AR/VR应用中的SLAM技术
  • SLAM技术对AR/VR应用的影响分析
  • 新使用案例- AR/VR 的 SLAM 技术
  • SLAM技术的区域趋势和影响
  • 新兴新兴企业的主要相关人员和关键技术发展
  • SLAM技术在影像应用上的多种经营模式
  • 未来SLAM研发方向

成长机会宇宙

  • 成长机会一:多感测器融合SLAM系统
  • 成长机会2:自主工业机器人
  • 成长机会3:无人机

附录

  • 技术成熟度等级 (TRL):解释

下一步

  • 下一步
  • 为什么是霜冻,为什么是现在?
  • 免责声明
简介目录
Product Code: DAB6

Mapping, Surveying, and Location-based Services and Applications are Transforming the Industry

Simultaneous localization and mapping (SLAM) technology in imaging applications is relying on sensor technologies and software algorithms. SLAM allows autonomous systems such as self-driving cars, robots, and drones to simultaneously build a map of their surroundings, navigate, operate effectively, and estimate their position on that map. It leverages inertial measurement units, camera systems, and LiDAR to collect data in the surrounding environments. By analyzing the sensor data, SLAM algorithms create a map of the environment and estimate position and orientation parameters. Algorithms are complex and computationally expensive, but they have advanced significantly in the last few decades.

SLAM is vital technology for a wide range of imaging applications in robots, augmented reality (AR), virtual reality (VR), and autonomous vehicles, and the market is expanding quickly. Urban planners, construction managers, and surveyors can create 3D maps of large-scale landscapes with ease and with desired accuracy through SLAM.

This study includes:

  • An overview of SLAM technology in imaging applications
  • Types of SLAM algorithms for imaging application
  • A comparative analysis of SLAM algorithms for imaging applications
  • The impact and significance of sensor fusion in SLAM-based imaging systems
  • An impact analysis of SLAM technology in medical imaging, satellite, robotics, and AR/VR applications
  • Emerging use cases of SLAM technology across industry verticals
  • Key growth opportunities, business models, and future directions

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Simultaneous Localization and Mapping (SLAM) Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology
  • Growth Environment
  • Technology Attractiveness Dashboard

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation of SLAM Algorithms for Imaging Applications
  • Growth Drivers
  • Growth Restraints

Technology Landscape Assessment

  • Overview of SLAM Technology in Imaging Applications
  • Types of SLAM Algorithms for Imaging Applications
  • Advantages and Disadvantages of Various SLAM Algorithms
  • Factors to Consider When Choosing a SLAM Algorithm for an Imaging Application
  • Comparative Analysis of SLAM Algorithms for Imaging Applications
  • Sensor Fusion for SLAM
  • SLAM Performance Metrics-Preparation, Evaluation, and Testing Phases
  • Patent Research Focus Areas
  • Funding Deals and Focus Areas

Impact Analysis of SLAM Technology for Imaging Application Across Industry Verticals

  • Impact Analysis of SLAM Technology for Satellite and Medical Imaging Applications
  • Emerging Use Cases-SLAM Technology for Satellite and Medical Imaging
  • SLAM Technology for Robotics Applications
  • Impact Analysis of SLAM Technology for Robotics Applications
  • Emerging Use Cases-SLAM Technology for Robotics
  • SLAM Technology for AR/VR Applications
  • Impact Analysis of SLAM Technology for AR/VR Applications
  • Emerging Use Cases-SLAM Technology for AR/VR
  • Regional Trends and Impact of SLAM Technology
  • Key Technology Developments of Major Stakeholders and Emerging Start-ups
  • Various Business Models for SLAM Technology in Imaging Applications
  • Future Directions of SLAM R&D

Growth Opportunity Universe

  • Growth Opportunity 1: Multisensor Fusion SLAM Systems
  • Growth Opportunity 2: Autonomous Industrial Robots
  • Growth Opportunity 3: UAVs

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer