封面
市场调查报告书
商品编码
1522944

碳捕获和利用(CCU)策略的创新:永续方法和价值创造

Innovations in Carbon Capture Utilization (CCU) Strategies: Sustainable Approaches and Value Creation

出版日期: | 出版商: Frost & Sullivan | 英文 47 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

脱碳排放的需求日益增加-密集型产业推动碳捕获和利用的采用

对难以减排的产业排放和应对气候变迁的需求日益增长,正在推动碳技术的大规模部署。未来几年需要高效率的碳利用技术将减排排放扩大到每年十亿吨,以实现净零排放目标,同时减少对石化燃料的依赖。

全球 CCS 研究所的数据显示,自 2020 年以来,全球整体碳捕集能力与前一年同期比较了 58%,这一事实证明了这一点。大型碳储存计划取决于储存地点的位置,这增加了运输成本。因此,碳利用技术具有巨大的潜力,可以实现分散的碳管理,同时生产可用于多种最终用途的二次原料。此外,从碳基技术获得的原材料创造了负碳经济,这是实现长期排放目标的关键。

碳利用技术的范围很大,因为它们解决了减少温室气体排放同时最大限度地减少对石化燃料资源的依赖的迫切需求。需要采取多项区域措施和有利的政策法规来加速全球大规模的碳利用设施部署。

碳利用过程是生产碳中和合成燃料、骨材、化学品和其他可用于多个部门或长期储存的二次原料的重要途径。因此,越来越多的人采取这些途径来促进向低碳经济的平稳过渡。

这项研究涵盖:

  • 各种碳利用途径(矿化、加氢、甲烷化、聚合)技术概述
  • 对整个碳利用过程价值链的业务进行详细的技术经济分析,将捕获的二氧化碳转化为付加的二次原料
  • 它还包括关键的成长机会、成长驱动因素和限制因素、产业的主要创新者以及碳利用领域的专利格局。

目录

战略问题

  • 为什么成长如此困难?
  • The Strategic Imperative 8(TM)
  • 碳基产业三大战略问题的影响
  • 成长机会推动Growth Pipeline Engine(TM)
  • 调查方法

充满成长机会的生态系统

  • 分析范围
  • 碳利用技术概述
  • 分割

成长要素

  • 生长促进因子
  • 成长抑制因素

成长转型

  • 碳利用价值链
  • 矿化技术成功大规模应用以获得工程建筑骨材
  • 加氢可以合成干净的甲醇和其他可再生燃料,使它们更容易运输
  • 甲烷化技术可生产煤製天然气取代天然气,且对现有基础设施的改变极小
  • 聚合产生短链聚合物,可用于製造日常应用中的塑料
  • 回收二氧化碳运输技术经济标准
  • 碳利用技术的技术经济分析

创新生态系统

  • 利用工业回收的碳大规模生产乙醇
  • 利用回收碳生产水泥基辅助材料
  • 利用绿色氢气和回收碳生产高效节能的甲醇
  • 在燃料电池和其他发电应用中使用回收的二氧化碳
  • 各大专院校推动碳捕集与利用研究
  • WIPO占碳利用专利大部分的情况
  • 碳捕集利用-主要资金筹措

充满成长机会的世界

  • 成长机会一:绿色尿素
  • 成长机会2:高性能电池
  • 成长机会3:永续纺织品

附录

  • 技术成熟度等级 (TRL):解释

下一步

  • 成长机会的好处和影响
  • 下一步
  • 下一步
  • 免责声明
简介目录
Product Code: DAF0

Growing demand for decarbonization of emission-intensive industries is driving the adoption of carbon capture and utilization

The growing need to achieve deep decarbonization in hard-to-abate industries and to address climate change is driving the large-scale deployment of carbon dioxide utilization technologies. Efficient carbon utilization technologies are required to scale up emission reduction to gigatons per annum in the coming years to meet Net-Zero Targets while reducing the dependency on fossil fuels.

This is backed by the fact that the average year-on-year increase in the carbon capture installed capacity has increased by 58% globally since 2020 as per Global CCS Institute. Large-scale carbon sequestration projects depend on the geographical site of storage locations, increasing transportation costs. Thus, carbon utilization technologies have great potential in enabling decentralized carbon management while generating secondary raw materials that can be used in several high-end applications. Further, raw materials derived from carbon utilization technologies create a carbon-negative economy which is key to achieving long-term emission reduction targets.

The scope of carbon utilization technology deployment is large because it will address the urgent need to reduce greenhouse gas emissions while minimizing the reliance on fossil fuel resources. Several regional initiatives and favorable policy regulations will be required to accelerate the deployment of large-scale carbon utilization facilities globally.

Carbon Utilization processes are important pathways that produce carbon-neutral synthetic fuels, aggregates, chemicals, and other secondary raw materials which can be used in several sectors or stored for longer durations. Hence, there is a lot of traction to adopt these pathways to accelerate a smooth transition to a low-carbon economy.

This research study covers the following:

  •      The technology overview of different carbon utilization pathways, namely mineralization, hydrogenation, methanation, and polymerization.
  •      Detailed techno-economic analysis of the operations across the value chain of carbon utilization processes to convert captured carbon dioxide into value-added secondary raw materials.
  •      The study also includes key growth opportunities, growth drivers and restraints, key innovators in the industry, and the patent landscape in the carbon utilization sector.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Carbon Utilization Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Ecosystem

  • Scope of Analysis
  • Carbon Utilization Technologies Overview
  • Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Growth Transformation

  • Carbon Utilization Value Chain
  • Mineralization Technology has been Successfully Deployed in Large Scale to Obtain Engineered Building Aggregates
  • Hydrogenation Enables Synthesis of Clean Methanol and Other Renewable Fuels Which can be Easily Transported
  • Methanation Technology Generates SNG That Replaces Natural Gas With Minimal Modifications in the Existing Infrastructure
  • Polymerization Produces Short-chain Polymers can be Used to Manufacture Plastics Used in Daily Applications
  • Technical and Financial Criteria for Captured CO2 Transport
  • Technoeconomic Analysis of Carbon Utilization Technologies

Innovation Ecosystem

  • Large-scale Manufacturing of Ethanol Using Captured Carbon from Industries
  • Supplementary Cementitious Material Production Using Captured Carbon
  • Energy-efficient Manufacturing of Methanol from Green Hydrogen and Captured Carbon
  • Captured CO2 Utilization in Fuel Cells and Other Applications for Power Production
  • Key Universities Driving Research in Carbon Capture Utilization
  • WIPO Holds the Majority Share in Carbon Utilization Patent Landscape
  • Carbon Capture and Utilization-Key Fundings

Growth Opportunity Universe

  • Growth Opportunity 1: Green Urea
  • Growth Opportunity 2: High-performance Batteries
  • Growth Opportunity 3: Sustainable Textiles

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Take the Next Step
  • Legal Disclaimer