封面
市场调查报告书
商品编码
1725042

美国H2 ICE 卡车产业二氧化碳排放生命週期(2024-2040 年)

CO2 Emissions Life Cycle in the H2 ICE Truck Industry, United States, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 44 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

采用 H2 ICE 作为清洁的 H2 生产源和中间解决方案将推动转型成长,并显着减少二氧化碳排放

在这项研究中,Frost & Sullivan 重点关注美国卡车运输业最有前景的燃料 H2,并研究二氧化碳排放的影响,全面检查了氢内燃机 (H2 ICE) 卡车的二氧化碳 (CO2) 特征。我们的分析从考虑 H2 的理由开始,强调与传统燃料相比减少生命週期排放的潜力。

我们深入研究了不同的 H2 生产方法,从灰氢到可再生能源,并揭示了每种方法都有不同的碳足迹。它主要关注製造 H2 ICE 汽车所产生的二氧化碳排放,并指出其中很大一部分来自 H2 引擎和储存槽等零件。 Frost & Sullivan 也对电池电动卡车、燃料电池电动卡车和柴油卡车进行了比较分析,预测了卡车整个使用寿命内的二氧化碳总排放。

最终,该研究强调了卡车运输业迫切需要转向更清洁的 H2 生产方法和优化汽车製造,以实现二氧化碳排放的大幅减少。

三大战略问题对氢燃料卡车产业二氧化碳排放生命週期的影响

转型大趋势

为什么?

  • 清洁交通正成为一种大趋势,新的出行模式正在塑造该产业的未来。
  • 各种类型的清洁交通工具越来越受欢迎,包括氢内燃机汽车 (H2 ICE)、电池电动车 (BEV) 和燃料电池电动车 (FCEV)。

弗罗斯特的观点

  • 卡车运输业是否采用 H2 ICE 等近零二氧化碳 (CO2)排放动力传动系统,将在很大程度上取决于拥有成本、H2 基础设施状况和政府支持。
  • 产业转型导致新公司的出现和现有公司的颠覆。

产业融合

为什么?

  • 生命週期二氧化碳排放评估连结不同的产业领域。能源供应商、H2 发电厂、燃料运输业者和燃料零售商必须共同努力,尽量减少 H2 ICE 的碳足迹。

弗罗斯特的观点

  • 监管机构需要製定二氧化碳追踪计划,以确保所有行业相关人员了解实现全生命週期二氧化碳中和的重要性。 Frost & Sullivan 预测,到 2030 年,美国和欧洲将引领法规环境。

地缘政治动盪

为什么?

  • 零排放卡车的生命週期评估将跨境进行。例如,澳洲和刚果共和国可以开采电池所需的矿物,中国可以精製矿物,韩国组装电池,最终的汽车将在美国行驶。因此,相关人员必须确保整个全球供应链的碳中和。

弗罗斯特的观点

  • 卡车目标商标产品製造商(OEM)和监管机构需要针对全球供应链限制进行规划,并应推动本地生产以更好地控制整个流程,避免向清洁能源运输转型过程中的地缘政治影响。

研究范围

各点内容

  • 基准年:2023年
  • 调查期间:2023-2030年(购买年份),2023-2036年(使用年份)
  • 预测期间:2024-2030 年(购买年份),2024-2036 年(使用年份),H2 采用预测至 2040 年
  • 市场:零排放卡车
  • 细分市场:中型卡车(MDT)和重型卡车(HDT)
  • 使用週期:使用週期是指使用年数(初始使用寿命)。本研究以循环 A 和 H 为例。
  • 专案领域:行动性
  • 地理区域:美国:加州、德克萨斯州、西南部(亚利桑那州和新墨西哥州总合)

成长动力

H2 ICE 卡车二氧化碳排放生命週期:成长动力(美国,2024-2037 年)

  • 转向清洁能源生产:H2 的生产来源是影响 CO2排放的关键因素。美国严重依赖天然气,再生能源来源的转型将对二氧化碳排放产生正面影响。
  • 远距且易于加油:借助专用的 H2 基础设施,只需几分钟即可为卡车的 H2 罐添加气态 H2。在许多使用案例中,当前一代 H2 ICE 车辆已经节省燃料,并且对车队营运商具有经济吸引力。
  • 对汽车生态系统的微小改变:仅对动力传动系统和后处理系统进行微小改变以及对现有供应链进行微小改变将有助于推动 H2 ICE 技术的采用。
  • 可比较的前期成本:购买 H2 ICE 卡车的前期成本明显低于 BEV 和 FCEV 选项,与传统 ICE 车辆大致相同。

成长抑制因素

H2 ICE 卡车二氧化碳排放生命週期:成长抑制因素(美国,2024-2037 年)

  • 有限的 H2 成本
  • 燃料基础设施不足
  • 间接排放
  • 安全问题

目录

美国H2 ICE 卡车产业二氧化碳排放生命週期(2024-2040 年)

转型

  • 为何成长变得越来越困难?
  • 战略问题
  • 三大策略问题对氢动力内燃机卡车产业生命週期二氧化碳排放的影响

成长环境:H2生态系统

  • H2是未来的燃料
  • H2 ICE 卡车生命週期二氧化碳流量
  • 生产氢气的不同方法
  • 主要燃料特性比较
  • 引擎主要参数对比
  • H2 ICE 的燃料喷射方法

生态系统

  • 研究范围
  • 动力传动系统技术细分

成长要素

  • 成长动力
  • 成长抑制因素

氢气生产过程中二氧化碳排放的痕迹

  • 主要氢气生产方法分析
  • 影响氢气生产应用的关键因素
  • 因素一:低二氧化碳排放及准备量
  • 因素2:清洁氢气计画与目标
  • 因素三:各州的氢气生产潜力与计画
  • 预测加州氢气生产的采用情况
  • 西南地区氢气生产的预计采用情况
  • 德克萨斯州采用 H2 生产预测
  • 氢气生产过程中二氧化碳排放轨迹

氢燃料卡车製造过程中的二氧化碳排放路径

  • H2 ICE卡车的关键零件
  • 车辆架构比较:柴油与 H2 ICE
  • H2 ICE 卡车主要部件重量
  • 氢燃料卡车製造中的二氧化碳排放轨迹

成长要素:H2 ICE-MDT 运行的二氧化碳排放轨迹

  • 使用案例特征和预测假设
  • 循环A和H:H2消费量和CO2排放
  • A-H 循环:每英里二氧化碳排放量 (kg)

成长要素:H2 ICE-HDT运作期间二氧化碳排放轨迹

  • 使用案例特征和预测假设
  • 循环A:火花点火
  • 循环A:高压缸内直喷
  • 循环H:火花点火
  • 循环H:高压缸内直喷
  • A-H 循环:每英里二氧化碳排放量 (kg)

内燃机、纯电动车与氢动力内燃机汽车的二氧化碳排放轨迹比较

  • MDT:ICE、BEV、FCEV 和 H2 ICE 循环 A 和 H 的比较
  • HDT:ICE、BEV、FCEV 和 H2 ICE 循环 A 和 H 的比较

关键要点:

  • 前 3 项

成长机会领域

  • 成长机会1:追踪二氧化碳排放
  • 成长机会2:替代低排放技术
  • 成长机会3:扩大氢能基础设施

附录与后续步骤

  • 成长机会的益处和影响
  • 后续步骤Next steps
  • 附件列表
  • 免责声明
简介目录
Product Code: PFM4-42

Clean H2 Production Sources and the Adoption of H2 ICE as an Intermediate Solution are Driving Transformational Growth by Significantly Reducing CO2 Emissions

In this study, Frost & Sullivan offers a comprehensive exploration of the carbon dioxide (CO2) trail of a hydrogen internal combustion engine (H2 ICE) truck by investigating the carbon emission implications, focusing on H2 as a prospective fuel for the trucking industry in the United States. Our analysis begins with the rationale for considering H2, highlighting its potential to mitigate life cycle emissions compared to conventional fuels.

We delve into various H2 production methods, ranging from grey H2 to renewable sources, each carrying distinct carbon footprints. Emphasis falls on the CO2 emissions associated with manufacturing H2 ICE vehicles, pinpointing significant contributions from components, including the H2 engine and storage tanks. Frost & Sullivan also projects total CO2 emissions throughout the operation of a truck, drawing comparative insights with its battery electric, fuel cell electric, and diesel truck counterparts.

Ultimately, this study underscores the urgency of transitioning to cleaner H2 production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking industry.

The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the H2 ICE Truck Industry

Transformative Megatrends

Why

  • Clean transportation is gaining momentum as a megatrend, with new mobility models shaping the industry's future.
  • Various types of clean transportation, such as hydrogen internal combustion engine (H2 ICE) vehicles, battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs), are gaining traction.

Frost Perspective

  • The trucking industry's adoption of near-zero carbon dioxide (CO2) emission powertrains, such as H2 ICE, will largely depend on the cost of ownership, the state of the H2 infrastructure, and government support.
  • Industry transformation will lead to the emergence of new players and disruption among existing players.

Industry Convergence

Why

  • A life cycle CO2 emission assessment brings different industry segments together. Energy sourcing companies, H2 generation plants, fuel transportation operators, and fuel dispensing outlets must collaborate to ensure the carbon trail for an H2 ICE remains minimal.

Frost Perspective

  • Regulatory authorities must lay out CO2 tracking plans to ensure all industry players understand the importance of achieving total life cycle CO2 neutrality. A few countries have begun rolling out regulations to track CO2 emissions; Frost & Sullivan expects the United States and Europe to lead the regulatory environment by 2030.

Geopolitical Chaos

Why

  • The life cycle assessment of zero-emission trucks goes beyond borders. For example, Australia and the Republic of the Congo mine minerals for batteries, China refines the minerals, South Korea assembles the batteries, and the final vehicles operate in the United States. As such, stakeholders must ensure carbon neutrality across the global supply chain.

Frost Perspective

  • Truck original equipment manufacturers (OEMs) and regulatory authorities must plan for global supply chain constraints, with a push toward local manufacturing to ensure more control of the complete process and avoid geopolitical impacts on the transition to clean-energy transportation.

Research Scope

Content Present in Points

  • Base Year: 2023
  • Study Period: 2023-2030 (purchase years); 2023-2036 (user years)
  • Forecast Period: 2024-2030 (purchase years); 2024-2036 (user years), H2 adoption forecast until 2040
  • Market: Zero-emission trucks
  • Segment: Medium-duty trucks (MDTs) and heavy-duty trucks (HDTs)
  • User Cycle: User cycle refers to the usage years (first life); the study illustrates cycles A and H
  • Program Area: Mobility
  • Geographic Scope: United States: California, Texas, and the Southwest (Arizona and New Mexico combined)

Growth Drivers

CO2 Emissions Life Cycle in the H2 ICE Truck: Growth Drivers, US, 2024-2037

  • Shift Toward Clean Energy Generation: The source of H2 production is an important factor impacting CO2 emissions. The United States depends heavily on NG, and the move toward renewable sources will positively impact CO2 emissions.
  • Ease of Long-range Driving and Refueling: With specialized H2 infrastructure, refueling a truck's H2 tank with gaseous H2 takes only a few minutes, significantly shorter than the extended recharge period for BEVs. In many use cases, the present generation of H2 ICE vehicles already has good fuel efficiency, making them economically appealing to fleet operators.
  • Minimal Change to the Automotive Ecosystem: Mild modification to the powertrain and aftertreatment system, in addition to minimal change to the existing supply chain, is an added boost to the adoption of H2 ICE technology.
  • Comparable Upfront Cost: The upfront cost of acquiring an H2 ICE truck is significantly lower than that of BEV or FCEV options and is more similar to that of conventional ICE vehicles.

Growth Restraints

CO2 Emissions Life Cycle in the H2 ICE Truck: Growth Restraints, US, 2024-2037

  • Restraint Cost of H2
  • Inadequate Refueling Infrastructure
  • Indirect Emissions
  • Safety Concerns

Table of Contents

CO2 Emissions Life Cycle in the H2 ICE Truck Industry, United States, 2024-2040

Transformation

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the H2 ICE Truck Industry

Growth Environment: H2 Ecosystem

  • H2 Is the Fuel of the Future
  • Life Cycle CO2 Flow of an H2 ICE Truck
  • Different Methods of Producing H2
  • Comparison of Key Fuel Characteristics
  • Comparison of Key Engine Parameters
  • H2 ICE Fuel Injection Methods

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

CO2 Emission Trail During H2 Production

  • Analysis of Major H2 Production Methods
  • Key Factors Impacting the Adoption of H2 Production Methods
  • Factor 1: Lower CO2 Emissions and Readiness Levels
  • Factor 2: Clean H2 Programs and Targets
  • Factor 3: States' H2 Production Potential and Plan
  • Adoption Forecast of H2 Production in California
  • Adoption Forecast of H2 Production in the Southwest
  • Adoption Forecast of H2 Production in Texas
  • CO2 Emission Trail from H2 Production

CO2 Emission Trail During the Manufacture of an H2 ICE Truck

  • Key Components of an H2 ICE Truck
  • Vehicle Architecture Comparison: Diesel vs H2 ICE
  • Major Components in an H2 ICE Truck by Weight
  • CO2 Emission Trail in Manufacturing an H2 ICE Truck

Growth Generator: CO2 Emission Trail During the Operation of an H2 ICE-MDT

  • Use Case Characteristics and Forecast Assumptions
  • Cycle A and H: H2 Consumption and CO2 Emissions
  • Cycle A to H: kg CO2 per Mile

Growth Generator: CO2 Emission Trail During the Operation of an H2 ICE-HDT

  • Use Case Characteristics and Forecast Assumptions
  • Cycle A: Spark Ignition
  • Cycle A: High-pressure Direct Injection
  • Cycle H: Spark Ignition
  • Cycle H: High-pressure Direct Injection
  • Cycle A to H: kg CO2 per Mile

CO2 Emission Trail Comparison Between ICE Vehicles, BEVs, and H2 ICE Vehicles

  • MDT: ICE, BEV, FCEV, and H2 ICE Comparison Cycle A and H
  • HDT: ICE, BEV, FCEV, and H2 ICE Comparison Cycle A and H

Key Takeaways

  • Top 3 Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Alternative Low-emission Technology
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer