封面
市场调查报告书
商品编码
1811973

碳中和策略-纯电动车的碳足迹

Carbon Neutrality Strategies-Battery Electric Vehicles' Carbon Footprint

出版日期: | 出版商: Frost & Sullivan | 英文 47 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

监管支援、电池创新、回收的进步、可再生能源整合以及透明的供应链将推动电动车生态系统向碳中和方向转型成长

本研究全面分析了实现纯电动车 (BEV) 碳中和的策略,重点在于电动车电池的生命​​週期排放。研究探讨了生命週期排放的概念,并评估了从原料开采到报废 (EOL) 阶段的环境影响。研究检验了政府、目标商标产品製造商 (OEM) 和电池製造商在製定道路交通脱碳策略方面的作用和影响。此外,研究还评估了旨在减少纯电动车碳足迹的现有和新兴政策的有效性。

本研究主要关注有助于实现碳中和的新技术,例如电池化学技术的进步、永续材料采购以及改进的回收过程。此外,本研究也着重于向碳中和交通转型带来的成长机会,并识别关键趋势和潜在创新领域。透过分析这些因素,本研究为纯电动车永续性的不断发展以及实现长期碳中和目标所需的协同努力提供了宝贵的见解。

三大战略重点对电动车产业的影响

转型大趋势

  • 原因:电动车 (EV) 是原始设备製造商 (OEM) 减少车辆二氧化碳排放策略的关键要素,受到欧盟 (EU) 和美国等主要地区的严格法规和期限的推动。然而,在电池製造、原料加工和充电过程中会产生大量排放。
  • Frost 的观点:原始设备製造商需要分析电动车整个生命週期内的总排放,以确保透明度并让消费者相信其真正的永续性。

地缘政治动盪

  • 原因:某些地区(包括非洲、南美洲和中国)对提取电动车电池原料的道德和环境实践的担忧日益加剧。
  • 这些担忧在新冠疫情期间加剧,促使欧盟解决潜在的供应链脆弱性,特别是对包括中国在内的某些市场的依赖。
  • 弗罗斯特的观点欧盟正在加强对电池生产和采购的监管,目的是减少对任何一个国家的依赖,实现原材料来源多样化(促进可回收性),并建立安全和永续的供应链。
  • 此外,美国优先考虑负责任的做法和供应链多样化,以减轻道德担忧并限制对关键原材料的获取。

产业融合

  • 原因:减少电动车的碳排放需要多个行业共同努力,包括整个生命週期,从采矿和精炼到电池阳极和阴极製造、车辆组装、充电基础设施的电网电源配置以及电池报废 (EOL) 解决方案。
  • 弗罗斯特的观点:为了实现生命週期二氧化碳中和,必须实施强制性的二氧化碳追踪计划,这将确保所有行业参与者了解其对环境的影响,并激励他们采用更清洁的流程和设计,最终加速向更永续的过渡。

市场/细分市场/专案领域

该研究重点关注碳中和电动汽车电池的策略,包括:

  • 生命週期排放概念概述
  • 对政府、原始设备製造商和电池製造商的影响
  • 改善电动车碳足迹的新技术

目标区域

  • 北美洲
  • 欧洲
  • 亚太地区(APAC)
  • 世界其他地区* (RoW)

驱动程式

  • 环境议题与消费者偏好
  • 永续性取得关键材料
  • 法规政策

成长抑制因素

  • 技术成熟度
  • 投资放缓
  • 电池製造和供应链挑战

目录

战略问题

  • 为何成长变得越来越困难?
  • The Strategic Imperative 8(TM)
  • 三大战略挑战对电动车产业的影响

介绍

  • 分析范围
  • 引言研究目的与目标
  • 主要 OEM 和电池製造商
  • 主要趋势
  • 成长动力
  • 成长抑制因素

生命週期评估

  • 纯电动车:关键生命週期阶段
  • 锂蕴藏量的地理集中度
  • 钴蕴藏量的地理集中度
  • 镍蕴藏量的地理集中度
  • 锰矿蕴藏量的地理集中度
  • 原料开采概述
  • 活性物质生产过程与能源需求
  • 欧洲再生能源来源份额
  • 清洁能源来源占比及充电站数量对比
  • 电池的二次使用取决于其一次使用后的容量
  • 电池回收的SWOT分析
  • 电动车电池回收政策:欧盟、英国和美国
  • 电动车电池回收政策:电动车电池回收政策:加拿大、中国
  • 日本和印度的电动车电池回收政策
  • 欧盟和中国制定了强而有力的电动车电池回收政策
  • 案例研究:沃尔沃EX30生命週期评估

OEM战略

  • 主要主机厂脱碳目标
  • 主要整车排放减排目标
  • 各地区整车厂电动车销售目标
  • 欧洲OEM厂商的电动车电池回收策略及伙伴关係
  • 其他原始设备製造商的电动车电池回收策略和伙伴关係
  • 宝马集团-永续性的领导者
  • 梅赛德斯-奔驰 - 致力于永续性,我们行动绿色
  • Volkswagen Group-goTOzero
  • 沃尔沃汽车-永续性是未来成功的关键
  • Stellantis -永续旅游技术公司 Dare Forward 2030
  • 雷诺集团-未来是中性的
  • 通用汽车-积极追求零排放世界的愿景
  • 福特汽车公司-建立更美好的世界
  • 现代汽车集团—人类进步
  • 丰田——碳中和之路
  • 原始设备製造商对碳补偿的依赖

成长机会宇宙

  • 成长机会1:循环设计与改良的电池製造
  • 成长机会二:促进废弃电池在回收前用于其他用途
  • 成长机会3:增加电池回收基础设施的财务投资

附录与后续步骤

  • 成长机会的益处和影响
  • 后续步骤Next steps
  • 附表
  • 免责声明
简介目录
Product Code: MH71-45

Regulatory Support, Battery Innovations, Recycling Advancements, Renewable Integration, and Transparent Supply Chains are Driving Transformational Growth Toward a Carbon-neutral EV Ecosystem

This study provides a comprehensive analysis of strategies for achieving carbon neutrality in battery electric vehicles (BEVs), with a focus on the life cycle emissions of EV batteries. It explores the concept of life cycle emissions, assessing the environmental impact from raw material extraction to the end-of-life (EOL) phase. The study examines the roles and implications of governments, original equipment manufacturers (OEMs), and battery manufacturers in shaping decarbonization strategies for road transport. In addition, it evaluates the effectiveness of existing and emerging policies aimed at reducing BEVs' carbon footprint.

A key focus is on new technologies that contribute to carbon neutrality, including advancements in battery chemistry, sustainable material sourcing, and improved recycling processes. The study also highlights the growth opportunities arising from the transition to carbon-neutral transportation, identifying key trends and potential areas of innovation. By analyzing these elements, the study provides valuable insights into the evolving landscape of BEV sustainability and the collaborative efforts required to achieve long-term carbon neutrality goals.

The Impact of the Top 3 Strategic Imperatives on the Electric Vehicles Industry

Transformative Megatrends

  • Why: Electric vehicles (EVs) are a key component of OEMs' strategies to reduce vehicles' CO2 footprint, driven by strict regulations and deadlines across key regions such as the European Union (EU) and the United States. However, they contribute significant emissions during the battery manufacturing, raw materials processing, and charging phases.
  • Frost Perspective: OEMs must analyze the overall emissions of their EVs during the entire life cycle to be transparent and convince consumers of their true sustainability credentials.

Geopolitical Chaos

  • Why: Growing concerns surround the ethical and environmental practices associated with raw material extraction for EV batteries in certain regions, including Africa, South America, and China.
  • These concerns intensified during the COVID-19 pandemic, prompting the EU to address potential supply chain vulnerabilities, particularly their dependence on specific markets, including China.
  • Frost Perspective: The EU is implementing stricter regulations on battery production and sourcing, aiming to reduce dependence on a single country, diversify raw material sources (push for recyclability), and develop a secure and sustainable supply chain.
  • Moreover, the United States is prioritizing responsible practices and supply chain diversification to mitigate ethical concerns and curb critical materials availability.

Industry Convergence

  • Why: Reducing EVs' carbon footprint requires collaboration across multiple industries. This includes the entire life cycle-from mining and refining to battery anode/cathode manufacturing, vehicle assembly, the electricity mix of the grid for charging infrastructure, and end-of-life (EOL) solutions for batteries.
  • Frost Perspective: To achieve total life cycle CO2 neutrality, mandatory CO2 tracking plans must be implemented. This will empower all industry participants to understand their environmental impact and incentivize them to adopt cleaner processes and designs, ultimately accelerating the transition to a more sustainable future.

Market/Segment/Program Area

The study covers strategies for carbon neutrality for EV batteries with a focus on:

  • An overview of the life cycle emissions concept
  • Implications for governments, OEMs, and battery manufacturers
  • New technologies that will improve EVs' carbon footprint

Geographic Scope

  • North America
  • Europe
  • Asia-Pacific (APAC)
  • Rest-of-World (RoW)*

Growth Drivers

  • Environmental Concerns and Consumer Preferences
  • Sustainability to Access Critical Materials
  • Regulations and Policies

Growth Restraints

  • Technology Maturity
  • Investment Slowdown
  • Challenges in Battery Manufacturing and Supply Chains

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Electric Vehicles Industry

Introduction

  • Scope of Analysis
  • Introduction: Research Aims and Objectives
  • Key OEMs and Battery Manufacturers
  • Key Trends
  • Growth Drivers
  • Growth Restraints

Life Cycle Assessment

  • Battery Electric Vehicles: Key Life Cycle Phases
  • Geographic Concentration of Lithium Reserves
  • Geographic Concentration of Cobalt Reserves
  • Geographic Concentration of Nickel Reserves
  • Geographic Concentration of Manganese Reserves
  • Raw Materials Mining Overview
  • Process and Energy Demand for Active Material Production
  • Share of Renewable Sources in Europe
  • Share of Clean Energy Sources Versus Number of Charging Stations
  • Batteries' Second-Life Usage Depends on Their Capacity after the End of Their First Life
  • Battery Recycling SWOT Analysis
  • EV Battery Recycling Policies: EU, UK, and US
  • EV Battery Recycling Policies: Canada and China
  • EV Battery Recycling Policies: Japan and India
  • EU and China Have Developed Strong EV Battery Recycling Policies
  • Case Study: Volvo EX30 Life Cycle Assessment

OEM Strategies

  • Decarbonization Targets for Major OEMs
  • Major OEMs' Performance Targets to Reduce Emissions
  • OEMs' EV Sales Target by Region
  • European OEMs' Strategies and Partnerships for EV Battery Recycling
  • Other OEMs' Strategies and Partnerships for EV Battery Recycling
  • BMW Group-Leading Sustainability
  • Mercedes-Benz-Commitment to Sustainability We Move Green
  • Volkswagen Group-goTOzero
  • Volvo Cars-Sustainability is the Key to Future Success
  • Stellantis-Transforming into a Sustainable Mobility Technology Company Dare Forward 2030
  • Renault Group-The Future is NEUTRAL
  • GM-Actively Pursuing a Vision of a World with Zero Emissions
  • Ford Motor Company-Building a Better World
  • Hyundai Motor Group-Progress for Humanity
  • Toyota-On the Road to Carbon Neutrality
  • OEM Reliance on Carbon Offsets

Growth Opportunity Universe

  • Growth Opportunity 1: Designing for Circularity and Battery Manufacturing Improvement
  • Growth Opportunity 2: Promoting the Use of EOL Batteries in Other Applications Before Recycling
  • Growth Opportunity 3: Increasing Financial Investments in Battery Recycling Infrastructure

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer