封面
市场调查报告书
商品编码
1892136

无膜电解:近期技术突破与成长机会

Membraneless Electrolysis: Recent Technical Breakthroughs and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 51 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

各种无膜电解技术评估-技术蓝图与产业现状

无膜电解技术正迅速发展,有望成为永续氢气生产的变革性技术,有效解决传统膜电解技术在成本、耐久性和气体纯度方面所面临的挑战。近年来,电极结构、氧化还原介质设计和流体管理方面的创新不断提升,提高了无膜电解技术在各种电解槽配置中的效率、扩充性和操作柔软性。催化剂材料和电解槽设计的创新则降低了消费量,并提高了对包括海水在内的不纯原料的耐受性。可再生能源、工业脱碳和化学製造等领域的跨产业合作正在加速该技术的商业化进程,并为清洁能源和氢能经济市场带来新的成长机会。

本研究涵盖以下内容:

  • 未来五年无膜电解技术的应用范围、成长要素和限制因素概述
  • 本文概述了绿色氢气生产及其面临的传统电解槽挑战,并着重阐述了无膜系统的必要性。
  • 对各种无膜电解技术(例如,浮力驱动、流通式、流通式、浓度驱动、毛细管流动驱动和分离反应器式)进行全面介绍和比较分析,并对製程流程进行评估。
  • 无膜电解方法的比较评估(重点在于效能指标、能源效率和可扩展性)
  • 创新生态系统分析:全面审视该领域的主要商业参与者、学术进展、专利趋势、资金筹措倡议以及相关人员应重点关注的关键成长机会,将其视为下一个成长前沿。

目录

战略要务

  • 为什么经济成长变得越来越困难?
  • The Strategic Imperative 8
  • 三大战略要务对工业工程产业的影响
  • 成长引擎由成长机会驱动
  • 调查方法

成长机会分析

  • 分析范围
  • 分割

成长驱动因素

  • 成长要素
  • 成长限制阻碍因素

技术概述

  • 绿色氢能概述
  • 传统电解技术面临的挑战
  • 新兴的无膜电解技术
  • 无膜电解中被动流动浮力驱动的气体分离
  • 浮力驱动无膜电解槽的阶段性功能
  • 基于无膜电解槽被动流动的浓度驱动型气体分离方法
  • 浓度驱动型无膜电解槽的逐步运行
  • 无膜电解中的主动流动式流动法
  • 流通式无膜电解槽的逐步工作原理
  • 基于无膜电解中主动流动的流通式工艺
  • 无膜电解槽中流通法的逐步功能
  • 独立式无膜电解:氧气和氢气生成,以改善气体管理
  • 分阶段运行分离式反应无膜电解槽
  • 毛细管流动驱动的无膜电解槽气体分离方法
  • 毛细管流动驱动无膜电解槽的逐步功能
  • 各种无膜电解槽技术的比较分析

创新生态系统

  • 利用先进的毛细管进料电解高效制氢
  • 利用无膜电解模组化生产绿氢
  • 推动无膜电解技术的主要企业和大学

主要资金筹措倡议和专利状况

  • 全球相关人员资金筹措倡议
  • 中国在无膜电解技术专利申请方面处于领先地位

成长机会领域

  • 成长机会1:透过无膜电解,将污水转化为氢气,扩大价值创造范围
  • 成长机会2:在恶劣环境和偏远地区实现按需氢气和製氧
  • 成长机会3:无膜电解促进低碳肥料和生物炼製厂的发展

附录与未来发展

  • 成长机会带来的益处和影响
  • 未来计划
  • 免责声明
简介目录
Product Code: DB5C

Assessing Various Membraneless Technologies for the Electrolysis Process-Technology Roadmap and Industry Landscape

Membraneless electrolysis is rapidly advancing as a transformative technology for sustainable hydrogen production, offering solutions to membrane-related cost, durability, and gas purity challenges. Recent breakthroughs in electrode architecture, redox mediator design, and flow management have enhanced the efficiency, scalability, and operational flexibility of membraneless electrolysis across diverse electrolyzer configurations. Innovations in catalyst materials and cell engineering within this process are reducing energy consumption and enabling tolerance to feedstocks containing impurities, including seawater. Cross-sector collaboration integrating renewable energy, industrial decarbonization, and chemical manufacturing is accelerating commercialization and unlocking growth opportunities across clean energy and hydrogen economy markets.

This research study covers the following:

  • An overview of the scope, growth drivers, and restraints shaping the adoption of membraneless electrolysis technologies over the next five years
  • An introduction to green hydrogen production and the challenges associated with conventional electrolyzers, underscoring the need for membraneless systems
  • A comprehensive introduction and comparative analysis of various membraneless electrolysis technologies (e.g., buoyancy-driven, flow-by, flow-through, concentration-driven, capillary flow-driven, and decoupled reactor-based), evaluating their technical process
  • A comparative assessment of membraneless electrolysis approaches, highlighting performance metrics, energy efficiency, and scalability potential
  • An analysis of the innovation ecosystem, encompassing key commercial players, academic advancements, patent trends, funding initiatives, and key growth opportunities upon which stakeholders working in this domain can focus on for the next frontier of growth

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the Industrial Engineering Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Technology Snapshot

  • An Introduction to Green Hydrogen
  • Challenges Facing Traditional Electrolysis Technologies
  • Introduction to Emerging Membraneless Electrolysis Technology
  • Passive Flow-Based Buoyancy-Driven Gas Separation in Membraneless Electrolysis
  • Stepwise Functioning of a Buoyancy-Driven Membraneless Electrolyzer
  • Passive Flow based Concentration-Driven Approach for Gas Separation in Membraneless Electrolyzers
  • Stepwise Functioning of a Concentration-Driven Membraneless Electrolyzer
  • Active Flow-Based Flow-By Method in Membraneless Electrolysis
  • Stepwise Functioning of a Flow-By Membraneless Electrolyzer
  • Active Flow-Based Flow-Through Process in Membraneless Electrolysis
  • Stepwise Functioning of a Flow By Membraneless Electrolyzer
  • Decoupled Membraneless Electrolysis: Oxygen and Hydrogen Evolution for Improved Gas Management
  • Stepwise Functioning of a Decoupled Reaction-Based Membraneless Electrolyzer
  • Capillary Flow-Driven Approach for Gas Separation in Membraneless Electrolyzers
  • Stepwise Functioning of a Capillary Flow-Driven Membraneless Electrolyzer
  • Comparative Analysis of Various Membraneless Electrolyzer Technologies

Innovation Ecosystem

  • High-Efficiency Hydrogen Production via Advanced Capillary-Fed Electrolysis
  • Modular Green Hydrogen Production via Membraneless Electrolysis
  • Key Companies and Universities Advancing Membraneless Electrolysis Technology

Key Funding Initiatives & Patent Landscape

  • Funding Initiatives By Global Stakeholders
  • China is at the Forefront of Patent Filings in Membraneless Electrolysis Technology

Growth Opportunity Universe

  • Growth Opportunity 1: Expanding Wastewater-to-Hydrogen Valorization with Membraneless Electrolysis
  • Growth Opportunity 2: Enabling On-Demand Hydrogen and Oxygen Generation in Extreme and Remote Environments
  • Growth Opportunity 3: Driving Low-Carbon Fertilizer and Biorefinery Growth Through Membraneless Electrolysis

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer