封面
市场调查报告书
商品编码
1516110

海上船舶洗涤器系统市场规模- 按燃料(MDO、MGO、混合动力等)、按技术(湿式技术和干式技术)、按应用(AHTS、PSV、FSV、MPSV 等)和预测,2024 年至2032年

Offshore Marine Scrubber Systems Market Size - By Fuel (MDO, MGO, Hybrid and Others), By Technology (Wet Technology and Dry Technology), By Application (AHTS, PSV, FSV, MPSV and Others) & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 410 Pages | 商品交期: 2-3个工作天内

价格
简介目录

由于严格环境法规的实施,2024-2032年全球海上船舶洗涤器系统市场规模将以9.8%的复合年增长率成长。国际海事组织,特别是国际海事组织(IMO)制定了严格的硫含量标准来限制船用燃料的硫含量。此外,永续发展目标 14 等全球倡议旨在到 2025 年预防和大幅减少一切形式的海洋污染,特别关注陆地污染,包括海洋垃圾和营养物污染(全球目标)。这些法规要求船东和承运人依照这些标准实施清洁系统。因此,船东投资船舶清洁系统不仅是为了满足这些规定,也是为了提高其耐用性。

市场的一个重要趋势是越来越关注数位化和自动化。船东和营运商正在整合先进的数位技术,以提高洗涤器系统的效率和有效性。自动控制系统可以即时监控和调整洗涤器的运行,确保最佳性能并符合环境要求。这些数位解决方案提供详细的资料分析,实现预测性维护并减少停机时间。透过数位化和自动化,航运业可以提高营运效率、降低成本、提高环保水平,成为推动市场前进的决定性趋势。

近海海洋清洁系统产业根据燃料、技术、应用和地区进行分类。

由于其效率和环境效益,干燥技术领域将在 2032 年之前快速成长。与使用液体溶液去除污染物的湿式洗涤器不同,干式洗涤器使用干燥试剂(通常是石灰或碳酸氢钠)来中和硫氧化物和其他有害排放物。该技术具有多项优点,例如耗水量更低、污泥产量更少以及废物处理过程更简单。干式洗涤器对于水供应和废弃物管理可能有困难的近海船舶非常有用。其紧凑的设计和易​​于安装使其成为改造现有船舶和新船舶的首选。

到 2032 年,起锚拖船供应领域将迎来可观的牵引力,因为对于海上石油和天然气作业至关重要的 AHTS 船舶需要可持续且可靠的排放控制解决方案来高效运作并满足环境法规。这些船舶经常在环境敏感地区作业,因此必须采用有效的减排技术。船舶洗涤系统可确保符合国际和地区排放标准,帮助 AHTS 船舶最大限度地减少环境足迹。

由于严格的环境法规和对永续海事实践的坚定承诺,到 2032 年,欧洲近海海洋洗涤器系统产业将以合理的速度扩张。该地区较早采用国际海事组织硫法规,使其成为海洋处理系统的领先实施者。挪威、丹麦和德国等国家在清洁海洋技术方面拥有强大的法律框架和大量投资,处于领先地位。欧洲港口和航运当局也在透过激励和支持计划促进摩擦系统的使用,这正在推动市场成长。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
    • 供应商矩阵
  • 监管环境
  • 产业影响力
    • 成长动力
    • 产业陷阱与挑战
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 战略仪錶板
  • 创新与永续发展前景

第 5 章:市场规模与预测:按燃料分类,2019 - 2032 年

  • 主要趋势
  • 多域DO
  • 氧化镁
  • 杂交种
  • 其他的

第 6 章:市场规模与预测:按技术划分,2019 - 2032 年

  • 主要趋势
  • 湿法技术
  • 干燥技术

第 7 章:市场规模与预测:按应用分类,2019 - 2032

  • 主要趋势
  • 高级高温超导系统
  • PSV
  • FSV
  • MPSV
  • 其他的

第 8 章:市场规模与预测:按地区划分,2019 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 法国
    • 英国
    • 义大利
    • 希腊
  • 亚太地区
    • 中国
    • 日本
    • 韩国
    • 马来西亚
    • 印尼
  • 世界其他地区

第 9 章:公司简介

  • ABB
  • ANDRITZ
  • ALEC Energy
  • Damen Shipyards Group
  • Eaton
  • Fuji Electric Co., Ltd.
  • General Electric
  • Hitachi Energy Ltd.
  • Keppel Offshore & Marine Ltd
  • KwangSung
  • MITSUBISHI HEAVY INDUSTRIES, LTD.
  • Schneider Electric
  • SAACKE GmbH
  • VDL AEC Maritime B.V.
  • Wartsilä
简介目录
Product Code: 8879

Global Offshore Marine Scrubber Systems market size will grow at 9.8% CAGR during 2024-2032 due to the implementation of stringent environmental regulations. International maritime organizations, particularly the International Maritime Organization (IMO), have established strict sulfur levels to limit the sulfur content of marine fuels. In addition, global initiatives such as SDG 14 aim to prevent and significantly reduce all forms of marine pollution by 2025, with a special focus on land-based pollution, including marine litter and nutrient pollution ( Global Goals). These regulations oblige ship owners and carriers to implement cleaning systems by these standards. As a result, ship owners are investing in ship cleaning systems not only to meet these regulations but also to improve their durability.

A significant trend in the market is the increasing focus on digitization and automation. Ship owners and operators are integrating advanced digital technologies to improve the efficiency and effectiveness of scrubber systems. Automatic control systems allow real-time monitoring and adjustment of scrubber operation, ensuring optimal performance and compliance with environmental requirements. These digital solutions provide detailed data analysis, enabling predictive maintenance and reducing downtime. With digitization and automation, the maritime industry can achieve greater operational efficiency, lower costs, and improve the level of environmental protection, making it a decisive trend pushing the market forward.

The Offshore Marine Cleaning Systems industry is classified based on fuel, technology, application, and region.

The dry technology segment will grow rapidly through 2032 due to its efficiency and environmental benefits. Unlike wet scrubbers, which use liquid solutions to remove contaminants, dry scrubbers use a dry reagent, usually lime or sodium bicarbonate, to neutralize sulfur oxides and other harmful emissions. This technology offers several advantages, such as lower water consumption, less sludge production, and simpler waste treatment processes. Dry scrubbers are useful for offshore vessels where water availability and waste management can be difficult. Their compact design and easy installation make them the preferred choice for retrofitting both existing and new vessels.

The anchor handling tug supply segment will witness decent traction through 2032 as AHTS vessels, essential for offshore oil and gas operations, require sustainable and reliable emission control solutions to operate efficiently and meet environmental regulations. These ships often operate in environmentally sensitive areas, making it imperative to adopt effective emission-reduction technologies. Ship scrubbing systems help AHTS vessels minimize their environmental footprint by ensuring compliance with international and regional emission standards.

Europe Offshore Marine Scrubber Systems industry will expand at a reasonable rate through 2032 due to strict environmental regulations and a strong commitment to sustainable maritime practices. Early adoption of IMO sulfur regulations in the region positioned it as a leading implementer of marine treatment systems. Countries like Norway, Denmark, and Germany are leaders with strong legal frameworks and significant investments in cleaner marine technology. European ports and shipping authorities are also promoting the use of friction systems with incentives and support programs, which is driving market growth.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Unpaid sources

Chapter 2 Executive Summary

  • 2.1 Industry 360 degree synopsis, 2019 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Vendor Matrix
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's Analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL Analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Strategic dashboard
  • 4.2 Innovation & sustainability landscape

Chapter 5 Market Size and Forecast, By Fuel, 2019 - 2032 (Units & USD Billion)

  • 5.1 Key trends
  • 5.2 MDO
  • 5.3 MGO
  • 5.4 Hybrid
  • 5.5 Others

Chapter 6 Market Size and Forecast, By Technology, 2019 - 2032 (Units & USD Billion)

  • 6.1 Key trends
  • 6.2 Wet technology
  • 6.3 Dry technology

Chapter 7 Market Size and Forecast, By Application, 2019 - 2032 (Units & USD Billion)

  • 7.1 Key trends
  • 7.2 AHTS
  • 7.3 PSV
  • 7.4 FSV
  • 7.5 MPSV
  • 7.6 Others

Chapter 8 Market Size and Forecast, By Region, 2019 - 2032 (Units & USD Billion)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 France
    • 8.3.3 UK
    • 8.3.4 Italy
    • 8.3.5 Greece
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 Japan
    • 8.4.3 South Korea
    • 8.4.4 Malaysia
    • 8.4.5 Indonesia
  • 8.5 Rest of World

Chapter 9 Company Profiles

  • 9.1 ABB
  • 9.2 ANDRITZ
  • 9.3 ALEC Energy
  • 9.4 Damen Shipyards Group
  • 9.5 Eaton
  • 9.6 Fuji Electric Co., Ltd.
  • 9.7 General Electric
  • 9.8 Hitachi Energy Ltd.
  • 9.9 Keppel Offshore & Marine Ltd
  • 9.10 KwangSung
  • 9.11 MITSUBISHI HEAVY INDUSTRIES, LTD.
  • 9.12 Schneider Electric
  • 9.13 SAACKE GmbH
  • 9.14 VDL AEC Maritime B.V.
  • 9.15 Wartsilä