封面
市场调查报告书
商品编码
1517530

抗辐射电子市场 - 按组件、製造技术、类型、应用、预测 2024 - 2032 年

Radiation Hardened Electronics Market - By Component, By Manufacturing Technique, By Type, By Application, Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 200 Pages | 商品交期: 2-3个工作天内

价格
简介目录

由于卫星和太空探索任务的增加,从 2024 年到 2032 年,抗辐射电子市场的复合年增长率将超过 5%。根据世界经济论坛称,政府将在2022年将太空探索支出增加90亿美元,占国防支出的45%,高于去年的41%。随着航太机构和私人公司将业务扩展到地球大气层之外,对能够承受太空辐射严酷的电子元件的需求不断增加。

抗辐射电子元件在确保太空船、卫星和深空侦测器关键系统的可靠性和使用寿命方面发挥关键作用。从通讯卫星到探索遥远行星的科学仪器,对灵活电子解决方案的需求正在推动抗辐射技术的创新和投资。

增加卫星在通讯和科学用途的使用是一个重要的市场趋势。随着对卫星通讯和研究的需求不断增长,对能够承受太空恶劣辐射的电子元件的需求也在不断增长。这一趋势鼓励了抗辐射电子设备的开发和部署,以确保卫星系统的可靠性和使用寿命。随着卫星技术的进步实现了更复杂的任务和应用,抗辐射电子市场对满足商业和科学领域卫星部署需求的灵活电子解决方案的需求不断增加。

抗辐射电子产业根据组件、製造技术、类型、应用和地区进行分类。

到 2032 年,抗辐射设计领域将快速成长,因为 RHBD 由于设计原理和材料选择而提供了更好的抗辐射能力。透过在设计阶段将耐辐射功能融入电子元件的架构中,RHBD 技术可以减少辐射引起的故障,并确保在恶劣环境中的持续性能。从积体电路到微处理器,RHBD 方法使电子系统的生产能够承受太空探索、国防行动和核子应用的严酷考验。

到 2032 年,军事和国防领域将继续稳步增长,因为从通讯系统和雷达设备到飞弹导引系统和无人机 (UAV),军事行动严重依赖能够在恶劣环境中承受辐射的电子元件。随着国防机构优先考虑关键的可靠性和耐用性,军事应用中对抗辐射电子产品的需求正在显着增加,推动了国防工业的创新和技术进步。

在技​​术专业知识、战略合作伙伴关係和监管倡议融合的推动下,到 2032 年,欧洲抗辐射电子产业将获得显着的实力。由于欧洲在太空探索、国防技术和核子研究方面发挥重要作用,该地区为抗辐射电子产品的开发和部署提供了肥沃的土壤。法国、德国和英国等国家在辐射防护技术方面处于领先地位,利用其研究能力和工业基础设施来开拓电气弹性。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商矩阵
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 增加太空探索任务和卫星部署
      • 军事和国防应用的需求
      • 核电厂和反应炉的使用不断增加
      • 航空航太业的扩张
      • 恶劣环境下对可靠通讯系统的需求不断增长
    • 产业陷阱与挑战
      • 开发和製造成本高
      • 专用组件的可用性有限
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按组成部分,2018 年 - 2032 年

  • 主要趋势
  • 积体电路 (IC)
  • 处理器和控制器
  • 能源管理
  • 记忆

第 6 章:市场估计与预测:按製造技术,2018 - 2032 年

  • 主要趋势
  • 辐射强化设计 (RHBD)
  • 依製程进行辐射硬化 (RHBP)

第 7 章:市场估计与预测:按类型,2018 - 2032

  • 主要趋势
  • 客製化
  • 商业现货 (COTS)

第 8 章:市场估计与预测:按应用划分,2018 年 - 2032 年

  • 主要趋势
  • 航太
  • 医疗的
  • 军事与国防
  • 核电厂
  • 其他的

第 9 章:市场估计与预测:按地区划分,2018 年 - 2032 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 10 章:公司简介

  • Advanced Micro Devices, Inc.
  • Analog Devices, Inc.
  • BAE Systems
  • Cobham Limited
  • Everspin Technologies Inc.
  • GSI Technology, Inc.
  • Honeywell International Inc.
  • Infineon Technologies AG
  • Mercury Systems, Inc.
  • Microchip Technology Inc.
  • Micropac Industries, Inc.
  • PCB Piezotronics, Inc.
  • Renesas Electronics Corporation
  • Semiconductor Components Industries, LLC
  • Space Micro, Inc.
  • STMicroelectronics
  • Teledyne Technologies Inc.
  • Texas Instruments Incorporated
  • Triad Semiconductor
  • TTM Technologies, Inc.
简介目录
Product Code: 8918

Radiation Hardened Electronics Market will witness over 5% CAGR from 2024 to 2032 due to increasing satellites and space exploration missions. According to the World Economic Forum, the government will increase spending on space exploration by $9 billion in 2022, accounting for 45 percent of defense spending, up from 41% last year. As space agencies and private companies expand their presence beyond Earth's atmosphere, demand for electronic components that can withstand the rigors of space radiation is increasing.

Radiation hardened electronics play a key role in ensuring the reliability and longevity of critical systems on spacecraft, satellites, and deep space probes. From communications satellites to scientific instruments exploring distant planets, the need for flexible electronics solutions is driving innovation and investment in radiation-hardening technologies.

Increasing the use of satellites for communication and scientific purposes is an important market trend. As the demand for satellite-based communications and research grows, so does the need for electronic components that can withstand the harsh radiation of space. This trend encourages the development and deployment of radiation hardened electronics that ensure the reliability and longevity of satellite systems. With advances in satellite technology enabling more complex missions and applications, the radiation hardened electronics market has seen increased demand for flexible electronics solutions tailored to the needs of satellite deployments in the commercial and scientific sectors.

The Radiation Hardened Electronics industry is classified based on component, manufacturing technology, type, application, and region.

The radiation hardened by design segment will grow rapidly through 2032, as RHBD offers better radiation resistance due to design principles and material selection. By incorporating radiation-tolerant features into the architecture of electronic components at the design stage, RHBD technologies reduce exposure to radiation-induced failures and ensure continuous performance in harsh environments. From integrated circuits to microprocessors, RHBD methodologies enable the production of electronic systems that can withstand the rigors of space exploration, defense operations, and nuclear applications.

The military and defense segment will continue to grow at a steady pace through 2032, as, from communication systems and radar equipment to missile guidance systems and unmanned aerial vehicles (UAVs), military operations rely heavily on electronic components that can withstand radiation in hostile environments. As defense agencies prioritize critical reliability and durability, the demand for radiation hardened electronics in military applications is increasing significantly, driving innovation and technological advancement in the defense industry.

Europe Radiation Hardened Electronics industry will gain significant strength through 2032, driven by the convergence of technological expertise, strategic partnerships, and regulatory initiatives. With Europe's important role in space exploration, defense technology, and nuclear research, the region offers fertile ground for the development and deployment of radiation hardened electronics. Countries such as France, Germany, and the UK are leading innovations in radiation protection technologies, leveraging their research capacity and industrial infrastructure to pioneer electrical flexibility.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Radiation hardened electronics industry 360 degree synopsis, 2018 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing space exploration missions and satellite deployments
      • 3.8.1.2 Demand from military and defense applications
      • 3.8.1.3 Rising use in nuclear power plants and reactors
      • 3.8.1.4 Expansion of the aerospace and aviation industries
      • 3.8.1.5 Growing need for reliable communication systems in harsh environments
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High development and manufacturing costs
      • 3.8.2.2 Limited availability of specialized components
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component, 2018 - 2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Integrated circuits (ICs)
  • 5.3 Processors & controllers
  • 5.4 Power management
  • 5.5 Memory

Chapter 6 Market Estimates & Forecast, By Manufacturing Technique, 2018 - 2032 (USD Million)

  • 6.1 Key trends
  • 6.2 Radiation hardening by design (RHBD)
  • 6.3 Radiation hardening by process (RHBP)

Chapter 7 Market Estimates & Forecast, By Type, 2018 - 2032 (USD Million)

  • 7.1 Key trends
  • 7.2 Custom made
  • 7.3 Commercial-off-the-shelf (COTS)

Chapter 8 Market Estimates & Forecast, By Application, 2018 - 2032 (USD Million)

  • 8.1 Key trends
  • 8.2 Aerospace
  • 8.3 Medical
  • 8.4 Military & defense
  • 8.5 Nuclear power plant
  • 8.6 Others

Chapter 9 Market Estimates & Forecast, By Region, 2018 - 2032 (USD Million)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 Advanced Micro Devices, Inc.
  • 10.2 Analog Devices, Inc.
  • 10.3 BAE Systems
  • 10.4 Cobham Limited
  • 10.5 Everspin Technologies Inc.
  • 10.6 GSI Technology, Inc.
  • 10.7 Honeywell International Inc.
  • 10.8 Infineon Technologies AG
  • 10.9 Mercury Systems, Inc.
  • 10.10 Microchip Technology Inc.
  • 10.11 Micropac Industries, Inc.
  • 10.12 PCB Piezotronics, Inc.
  • 10.13 Renesas Electronics Corporation
  • 10.14 Semiconductor Components Industries, LLC
  • 10.15 Space Micro, Inc.
  • 10.16 STMicroelectronics
  • 10.17 Teledyne Technologies Inc.
  • 10.18 Texas Instruments Incorporated
  • 10.19 Triad Semiconductor
  • 10.20 TTM Technologies, Inc.