封面
市场调查报告书
商品编码
1518505

半导体键合市场- 按类型(晶片键合机、晶圆键合机、倒装晶片键合机)、按製程(晶片到晶片键合、晶片到晶圆键合、晶圆到晶圆键合)、按应用和预测,2024 - 2032 年

Semiconductor Bonding Market - By Type (Die Bonder, Wafer Bonder, Flip Chip Bonder), By Process (Die To Die Bonding, Die To Wafer Bonding, Wafer To Wafer Bonding), By Application & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 250 Pages | 商品交期: 2-3个工作天内

价格
简介目录

在高性能设备需求不断增长以及物联网和 5G 技术扩展的推动下,全球半导体键合市场从 2024 年到 2032 年将实现 3% 的复合年增长率。随着消费者寻求更快、更有效率的电子产品和工业采用互连设备,对先进半导体键合解决方案的需求不断增加。这些技术促进了紧凑而强大的电子元件的生产,这些电子元件对于电信、汽车电子和智慧型设备的下一代应用至关重要。这一趋势凸显了半导体键合在跨行业实现创新且可靠的连接解决方案方面的关键作用。

例如,2024 年 3 月,Tanaka Kikinzoku Kogyo 开发了一种使用 AuRoFUSE 浆料的金颗粒键合技术,可在低温下实现高密度半导体安装,并推进工业贵金属应用。它显示了一种更高效的半导体製造流程的趋势,有可能推动全球先进键合技术的采用。这项发展突显了业界在提高半导体製造性能和成本效益方面的持续发展,使田中贵金属工业成为推动半导体键合技术的关键参与者。

半导体键合产业根据类型、製程、应用和地区进行分类。

由于对先进半导体装置的需求不断增加,到 2032 年,晶圆键合机将显着改善。这些键合机有助于半导体晶圆的精确键合,这对于製造积体电路和微机电系统 (MEMS) 至关重要。随着电子、电信和汽车领域的应用不断增加,晶圆键结机可提供高产量和可靠性。它们能够实现复杂的键合工艺,例如熔合和粘合键合,使其成为半导体製造中的重要工具。该领域的成长对于满足产业对更小、更快、更有效率的电子元件的需求至关重要。

在无线通讯技术需求不断增长的推动下,射频设备领域将在 2024 年至 2032 年间显着成长。射频设备对于行动装置、物联网应用和电信基础架构中发射和接收射频讯号至关重要,需要精确的接合技术才能达到最佳效能。随着 5G 技术和物联网连接的进步推动市场成长,射频元件领域在半导体键结中的关键作用将会扩大。这一趋势凸显了其对全球实现可靠、高效的无线通讯解决方案的重大贡献。

北美半导体键合市场份额从 2024 年到 2032 年将实现适度的复合年增长率,这要归功于其强大的半导体产业基础设施和在研发方面的大量投资。该地区先进的技术能力和主要市场参与者的强大影响力奠定了其领先地位。此外,对高性能电子设备的需求不断增长以及半导体製造流程的创新进一步增强了北美作为半导体键合产业成长和创新主要贡献者的地位。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商矩阵
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 电子设备的小型化
      • 对穿戴式科技的高需求
      • 扩大电信基础设施
      • 物联网 (IoT) 的普及
      • 政府和产业投资
    • 产业陷阱与挑战
      • 设备成本高
      • 技术复杂性
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按类型,2021-2032 年

  • 主要趋势
  • 固晶机
  • 晶圆键合机
  • 倒装晶片键合机

第 6 章:市场估计与预测:依流程划分,2021-2032 年

  • 主要趋势
  • 晶片到晶片接合
  • 晶片到晶圆键合
  • 晶圆到晶圆键合

第 7 章:市场估计与预测:按应用划分,2021-2032 年

  • 主要趋势
  • 射频设备
  • MEMS 和感测器
  • CMOS影像感测器
  • 引领
  • 3D快闪记忆体
  • 先进封装
  • 功率IC和功率分立元件
  • 其他的

第 8 章:市场估计与预测:按地区,2021-2032 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 9 章:公司简介

  • ASM Pacific Technology Ltd.
  • BE Semiconductor Industries N.V.
  • EV Group
  • Fasford Technology Co., Ltd.
  • Intel Corporation
  • Kulicke & Soffa Industries, Inc.
  • Mitsuibishi Heavy Industries, Ltd.
  • Mycronic Group
  • Palomar Technologies
  • Panasonic Corporation
  • Shibaura Mechatronics
  • Shinkawa Ltd.
  • SUSS Microtech SE
  • TDK Corporation
  • Tokyo Electron Ltd.
简介目录
Product Code: 9233

Global Semiconductor Bonding Market will garner a 3% CAGR from 2024 to 2032, fueled by increasing demand for high-performance devices and the expansion of IoT and 5G technologies. As consumers seek faster, more efficient electronics and industries adopt interconnected devices, there's a heightened need for advanced semiconductor bonding solutions. These technologies facilitate the production of compact and powerful electronic components essential for next-generation applications in telecommunications, automotive electronics, and smart devices. This trend underscores the pivotal role of semiconductor bonding in enabling innovative and reliable connectivity solutions across diverse sectors.

For instance, in March 2024, Tanaka Kikinzoku Kogyo developed a gold particle bonding technology using AuRoFUSE paste, enabling high-density semiconductor mounting at low temperatures and advancing industrial precious metal applications. It suggests a trend towards more efficient semiconductor manufacturing processes, potentially driving the adoption of advanced bonding techniques globally. This development underscores the industry's ongoing evolution towards improved performance and cost-effectiveness in semiconductor fabrication, positioning Tanaka Kikinzoku Kogyo as a key player in advancing semiconductor bonding technologies.

The semiconductor bonding industry is classified based on type, process, application, and region.

The wafer bonder will encounter a marked upturn through 2032 due to increasing demand for advanced semiconductor devices. These bonders facilitate precise bonding of semiconductor wafers, which are crucial for manufacturing integrated circuits and microelectromechanical systems (MEMS). With rising applications in the electronics, telecommunications, and automotive sectors, wafer bonders offer high throughput and reliability. Their ability to achieve intricate bonding processes, such as fusion and adhesive bonding, positions them as essential tools in semiconductor fabrication. This segment's growth is pivotal in meeting industry demands for smaller, faster, and more efficient electronic components.

The RF devices segment will observe a noteworthy surge between 2024 and 2032, driven by growing demand for wireless communication technologies. RF devices, essential for transmitting and receiving radio frequency signals in mobile devices, IoT applications, and telecommunications infrastructure, require precise bonding techniques for optimal performance. As advancements in 5G technology and IoT connectivity drive market growth, the RF devices segment's critical role in semiconductor bonding will expand. This trend underscores its significant contribution to enabling reliable and efficient wireless communication solutions globally.

North America semiconductor bonding market share will achieve a modest CAGR from 2024 to 2032, attributed to its robust semiconductor industry infrastructure and significant investments in research and development. The region's advanced technological capabilities and strong presence of key market players contribute to its leading position. Moreover, increasing demand for high-performance electronic devices and innovations in semiconductor manufacturing processes further bolster North America's role as a major contributor to the semiconductor bonding industry's growth and innovation.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360 degree synopsis, 2021 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Miniaturization of electronic devices
      • 3.8.1.2 High demand for wearable technology
      • 3.8.1.3 Expansion of telecommunications infrastructure
      • 3.8.1.4 The proliferation of the internet of things (IoT)
      • 3.8.1.5 Government and industry investments
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High equipment costs
      • 3.8.2.2 Technological complexity
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Type, 2021-2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Die bonder
  • 5.3 Wafer bonder
  • 5.4 Flip chip bonder

Chapter 6 Market Estimates & Forecast, By Process, 2021-2032 (USD Million)

  • 6.1 Key trends
  • 6.2 Die to die bonding
  • 6.3 Die to wafer bonding
  • 6.4 Wafer to wafer bonding

Chapter 7 Market Estimates & Forecast, By Application, 2021-2032 (USD Million)

  • 7.1 Key trends
  • 7.2 RF devices
  • 7.3 MEMS and sensors
  • 7.4 CMOS image sensors
  • 7.5 LED
  • 7.6 3D NAND
  • 7.7 Advanced packaging
  • 7.8 Power IC and power discrete
  • 7.9 Others

Chapter 8 Market Estimates & Forecast, By Region, 2021-2032 (USD Million)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 ANZ
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Rest of Latin America
  • 8.6 MEA
    • 8.6.1 UAE
    • 8.6.2 South Africa
    • 8.6.3 Saudi Arabia
    • 8.6.4 Rest of MEA

Chapter 9 Company Profiles

  • 9.1 ASM Pacific Technology Ltd.
  • 9.2 BE Semiconductor Industries N.V.
  • 9.3 EV Group
  • 9.4 Fasford Technology Co., Ltd.
  • 9.5 Intel Corporation
  • 9.6 Kulicke & Soffa Industries, Inc.
  • 9.7 Mitsuibishi Heavy Industries, Ltd.
  • 9.8 Mycronic Group
  • 9.9 Palomar Technologies
  • 9.10 Panasonic Corporation
  • 9.11 Shibaura Mechatronics
  • 9.12 Shinkawa Ltd.
  • 9.13 SUSS Microtech SE
  • 9.14 TDK Corporation
  • 9.15 Tokyo Electron Ltd.