封面
市场调查报告书
商品编码
1529035

自主海洋车辆市场规模 - 按产品类型、子系统、类型、应用和预测,2024 年至 2032 年

Autonomous Marine Vehicle Market Size - By Product Type, By Sub-system, By Type, By Application & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 250 Pages | 商品交期: 2-3个工作天内

价格
简介目录

在产业领导者不断创新和推出的推动下,2024 年至 2032 年间,全球自主海洋车辆市场复合年增长率将达到 5.6%。这些车辆配备了先进的人工智慧和导航系统,正在彻底改变航运、国防、海上能源和科学研究等领域的海上运作。该公司正在开发能够执行传统上由有人驾驶船舶完成的任务的自主船舶,包括监视、海洋学研究和货物运输。

例如,2023 年 11 月,透过自动驾驶车辆收集海洋资料的先驱 Saildrone 首次获得了美国船级社对自动无人水面车辆的分类。 Saildrone Voyager 是一款用于近岸测深和海上安全的 10 公尺 USV,它展示了其作为增强全球海洋近即时资料收集的平台的可靠性。

领先公司正在投资尖端技术,以提高船舶自主性、安全性和营运效率。这包括整合感测器阵列、通讯系统和预测分析,以自主导航不可预测的海洋环境。随着海运业寻求降低营运成本、提高永续性和提高海上安全性,对自主海洋车辆的需求预计将增长,从而推动这个充满活力的行业的进一步创新和市场扩张。

整个自主海洋车辆产业根据产品类型、子系统、类型、应用和区域进行分类。

由于水面车辆的多功能性和在各个海事领域的应用,自主海洋车辆市场对水面车辆的需求不断增加。配备先进导航系统和感测器的水面自主车辆用于海洋学研究、环境监测、监视和海上作业。它们透过消除对船上船员的需求,同时提高海上营运效率和安全性,提供经济高效的解决方案。随着各行业优先考虑效率和永续性,水面自动驾驶车辆正在成为资料收集、海事安全和探索偏远海洋环境的重要工具。随着公司不断创新以满足多样化的行业需求和监管要求,这一趋势正在推动市场成长。

由于需要提高海上作业的营运效率和安全性,自动船用车辆(AMV)市场正在经历石油和天然气产业的需求增加。 AMV配备了先进的导航和感测技术,用于管道检查、海上平台监测和环境调查。它们透过减少营运停机时间并降低与恶劣海洋环境中的载人任务相关的风险来提供经济高效的解决方案。随着石油和天然气公司优先考虑成本效率和环境永续性,AMV 的采用持续成长。这些自主船舶有助于优化海上作业,同时遵守严格的安全和监管标准。

在欧洲,由于海洋研究、环境监测和海事安全投资的增加,对自主海洋车辆(AMV)的需求不断增加。具有自主导航系统和遥感功能等先进技术的 AMV 对于进行高效和可持续的海洋学调查和检查至关重要。注重永续发展和海洋保护的欧洲国家正在利用AMV来增强其在近海能源勘探、渔业管理和气候研究方面的能力。随着法规支援技术进步和产业寻求最大限度地减少对环境的影响,欧洲对 AMV 的需求持续扩大,促进了整个海事部门的创新和合作。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商格局
    • 零件供应商
    • 整车製造商
    • 软体开发商
    • 系统整合商
    • 售后服务商
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 对海洋学和环境资料的需求不断增长
      • 专注海上安全与保障
      • 在依赖水下基础设施检查和维护的石油和天然气产业中的应用
      • 感测器、人工智慧和自主导航技术的进步
      • AMV 的效率和成本节约
    • 产业陷阱与挑战
      • 开发和部署 AMV 的初始投资较高
      • 有限的操作范围和自主权
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:依产品类型,2021 - 2032 年

  • 主要趋势
  • 地面车辆
  • 水下航行器

第 6 章:市场估计与预测:按类型,2021 - 2032

  • 主要趋势
  • 半自主
  • 自主

第 7 章:市场估计与预测:按子系统,2021 - 2032

  • 主要趋势
  • 推进力
  • 驱动系统
  • 避免碰撞
  • 有效载荷和成像
  • 通讯与导航

第 8 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 军事与国防
  • 石油和天然气
  • 环境监测
  • 海洋学
  • 考古与探索
  • 搜寻及打捞行动

第 9 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 西班牙
    • 义大利
    • 俄罗斯
    • 北欧人
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 东南亚
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 10 章:公司简介

  • Kongsberg Maritime
  • Teledyne Marine
  • L3Harris Technologies
  • Ocean Infinity
  • General Dynamics Mission Systems
  • Saab Seaeye
  • Atlas Elektronik
  • Liquid Robotics (a Boeing Company)
  • ECA Group
  • Bluefin Robotics (a General Dynamics company)
  • Oceanscan
  • Subsea 7
  • Saipem
  • Sonardyne International Ltd
  • Hydroid (a subsidiary of Huntington Ingalls Industries)
  • iXblue
  • ASV Global (now part of L3Harris Technologies)
  • Eelume AS
  • Seabotix (a Teledyne Marine company)
  • SeaRobotics Corporation
简介目录
Product Code: 9485

Global Autonomous Marine Vehicle Market will witness a 5.6% CAGR between 2024 and 2032, driven by continuous innovations and launches from industry leaders. These vehicles, equipped with advanced artificial intelligence and navigation systems, are revolutionizing maritime operations in sectors such as shipping, defense, offshore energy, and scientific research. Companies are developing autonomous vessels capable of performing tasks traditionally done by manned ships, including surveillance, oceanographic research, and cargo transportation.

For instance, in November 2023, Saildrone, a pioneer in ocean data collection through autonomous vehicles, for the first time, a classification for an autonomous, uncrewed surface vehicle from the American Bureau of Shipping. The Saildrone Voyager, a 10-meter USV utilized for near-shore bathymetry and maritime security, demonstrated its reliability as a platform that enhances data collection in near-real-time across global oceans.

Leading firms are investing in cutting-edge technologies to enhance vessel autonomy, safety, and operational efficiency. This includes integrating sensor arrays, communication systems, and predictive analytics to navigate unpredictable maritime environments autonomously. As maritime industries seek to reduce operating costs, increase sustainability, and improve safety at sea, the demand for autonomous marine vehicles is expected to grow, driving further innovation and market expansion in this dynamic sector.

The overall Autonomous Marine Vehicle Industry is classified based on the product type, sub-system, type, application, and region.

The autonomous marine vehicle market is seeing increased demand for surface vehicles due to their versatility and applications in various maritime sectors. Surface autonomous vehicles, equipped with advanced navigation systems and sensors, are used for oceanographic research, environmental monitoring, surveillance, and offshore operations. They offer cost-effective solutions by eliminating the need for onboard crews while improving operational efficiency and safety at sea. As industries prioritize efficiency and sustainability, surface autonomous vehicles are becoming essential tools for data collection, maritime security, and exploring remote marine environments. This trend is driving market growth as companies innovate to meet diverse industry needs and regulatory requirements.

The Autonomous Marine Vehicle (AMV) market is experiencing heightened demand from the oil and gas industry, driven by the need to enhance operational efficiency and safety in offshore operations. AMVs, equipped with advanced navigation and sensing technologies, are deployed for pipeline inspection, offshore platform monitoring, and environmental surveys. They offer cost-effective solutions by reducing operational downtime and mitigating risks associated with manned missions in harsh marine environments. As oil and gas companies prioritize cost efficiency and environmental sustainability, the adoption of AMVs continues to grow. These autonomous vessels help optimize offshore operations while adhering to stringent safety and regulatory standards.

In Europe, there is a rising demand for Autonomous Marine Vehicles (AMVs) driven by increasing investments in marine research, environmental monitoring, and maritime security. AMVs with advanced technology, such as autonomous navigation systems and remote sensing capabilities, are crucial for conducting efficient and sustainable oceanographic surveys and inspections. European countries focusing on sustainable development and marine conservation are leveraging AMVs to enhance their capabilities in offshore energy exploration, fisheries management, and climate research. As regulations support technological advancements and industries seek to minimize environmental impact, the demand for AMVs in Europe continues to expand, fostering innovation and collaboration across the maritime sector.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Component suppliers
    • 3.2.2 Vehicle manufacturers
    • 3.2.3 Software developers
    • 3.2.4 System integrators
    • 3.2.5 After-sales service providers
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Growing demand for oceanographic and environmental data
      • 3.8.1.2 Focus on maritime safety and security
      • 3.8.1.3 Applications in the oil and gas industry that relies on underwater infrastructure inspection and maintenance
      • 3.8.1.4 Advancements in sensor, AI, and autonomous navigation technology
      • 3.8.1.5 Efficiency and cost savings of AMV's
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High initial investment in developing and deploying AMVs
      • 3.8.2.2 Limited operational range and autonomy
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Product Type, 2021 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Surface vehicles
  • 5.3 Underwater vehicles

Chapter 6 Market Estimates & Forecast, By Type, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Semi-Autonomous
  • 6.3 Autonomous

Chapter 7 Market Estimates & Forecast, By Sub-System, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Propulsion
  • 7.3 Drive system
  • 7.4 Collision avoidance
  • 7.5 Payloads & imaging
  • 7.6 Communication & navigation

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Military & defense
  • 8.3 Oil & gas
  • 8.4 Environment monitoring
  • 8.5 Oceanography
  • 8.6 Archaeology & exploration
  • 8.7 Search & salvage operation

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Russia
    • 9.3.7 Nordics
    • 9.3.8 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 Kongsberg Maritime
  • 10.2 Teledyne Marine
  • 10.3 L3Harris Technologies
  • 10.4 Ocean Infinity
  • 10.5 General Dynamics Mission Systems
  • 10.6 Saab Seaeye
  • 10.7 Atlas Elektronik
  • 10.8 Liquid Robotics (a Boeing Company)
  • 10.9 ECA Group
  • 10.10 Bluefin Robotics (a General Dynamics company)
  • 10.11 Oceanscan
  • 10.12 Subsea 7
  • 10.13 Saipem
  • 10.14 Sonardyne International Ltd
  • 10.15 Hydroid (a subsidiary of Huntington Ingalls Industries)
  • 10.16 iXblue
  • 10.17 ASV Global (now part of L3Harris Technologies)
  • 10.18 Eelume AS
  • 10.19 Seabotix (a Teledyne Marine company)
  • 10.20 SeaRobotics Corporation