封面
市场调查报告书
商品编码
1532467

航太航天机器人市场,按应用(钻孔、焊接、喷漆、检查)、按类型(铰接式、笛卡尔)、按技术(传统、协作)、按解决方案(硬体、软体、服务)和预测,2024 - 2032 年

Aerospace Robotics Market, By Application (Drilling, Welding, Painting, Inspection), By Type (Articulated, Cartesian), By Technology (Traditional, Collaborative), By Solution (Hardware, Software, Services) & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 200 Pages | 商品交期: 2-3个工作天内

价格
简介目录

由于对安全性和飞机零件复杂性的关注,2024 年至 2032 年间,全球航太航天机器人市场规模将以 13% 的复合年增长率扩大。随着航空航太製造商优先考虑工人的安全,机器人越来越多地被用来处理危险任务,减少人类暴露在危险环境中的机会。此外,现代飞机零件的复杂性和精确性要求先进的机器人系统能够进行高精度和复杂的操作。对安全性和精度不断增长的需求推动了机器人技术的采用,从而扩大了航空航天机器人产业。

例如,2024 年 5 月,斗山机器人在芝加哥 Automate 2024 展会上推出了新型 P-SERIES PRIME-SERIES 协作机器人 P3020。此型号的有效负载为 30 公斤,工作范围为 80 英寸,增强了自动化能力。这项发展凸显了航空航太领域更强大、更通用的机器人解决方案的趋势,有可能推动自动化技术的进一步采用和创新,以满足产业不断变化的需求。

航空航天机器人市场根据应用、类型、技术、解决方案和区域进行细分。

由于喷漆领域在提高飞机美观性和耐用性方面发挥关键作用,到 2032 年,喷漆领域将取得显着成长。自动喷漆系统提供精确、高效和一致性,这对于满足严格的航空标准至关重要。随着航空航太製造商越来越重视高品质的表面处理和降低劳动力成本,简化喷漆流程的机器人解决方案越来越受到关注。该细分市场的成长是由机器人技术的进步所推动的,该技术实现了复杂、高速的涂装应用,从而在航空航天机器人行业中占据了很大的份额。

由于其多功能性和处理复杂任务的先进能力,到 2032 年,铰接式部分将大幅成长。关节式机器人具有多个自由度,非常适合在飞机的有限空间内执行复杂的操作,例如组装、检查和维护。它们的灵活性和精确度提高了操作效率,使其成为现代航空航天应用的必需品。随着产业不断拥抱自动化,对铰接式机器人的需求将显着成长。

由于其强大的航空航太製造基础和先进的技术基础设施,欧洲航空航天机器人市场份额从2024年到2032年将经历显着的复合年增长率。该地区对飞机生产创新和高标准的重视推动了机器人技术的采用,以提高效率和精确度。法国、德国和英国等国家的主要航空航天中心正在大力投资机器人技术,以保持竞争优势。这种不断增长的投资和技术进步使欧洲成为航空航天机器人行业的重要贡献者。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商矩阵
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 飞机製造流程对自动化的需求不断增加
      • 强调降低成本和提高效率。
      • 用于复杂航空航天任务的机器人技术的进步
      • 日益关註生产中的精度和品质控制
      • 解决航空航太营运的劳动力短缺和安全问题
    • 产业陷阱与挑战
      • 对自动化系统中网路安全风险的担忧
      • 确保机器人技术合规性的挑战
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 钻孔
  • 焊接
  • 绘画
  • 检查
  • 其他的

第 6 章:市场估计与预测:按类型,2021 - 2032

  • 主要趋势
  • 铰接式
  • 笛卡儿
  • 其他的

第 7 章:市场估计与预测:依技术分类,2021 - 2032 年

  • 主要趋势
  • 传统的
  • 协作性

第 8 章:市场估计与预测:按解决方案,2021 - 2032 年

  • 主要趋势
  • 硬体
  • 软体
  • 服务

第 9 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 10 章:公司简介

  • ABB
  • AV&R
  • Electroimpact Inc.
  • Fanuc Corporation
  • JH Robotics, Inc.
  • KUKA AG
  • Mitsubishi Electric Corporation
  • OC Robotics
  • Universal Robots A/S
  • Yaskawa Electric Corporation
简介目录
Product Code: 9518

Global Aerospace Robotics Market size will expand at a 13% CAGR between 2024 and 2032, attributed to the focus on safety and the complexity of aircraft components. As aerospace manufacturers prioritize worker safety, robots are increasingly employed to handle hazardous tasks, reducing human exposure to dangerous environments. Furthermore, the intricate and precise nature of modern aircraft components necessitates advanced robotic systems capable of high precision and complex operations. This growing demand for both safety and precision fuels the adoption of robotics, thereby expanding the aerospace robotics industry.

For instance, in May 2024, Doosan Robotics introduced its new P-SERIES PRIME-SERIES collaborative robot, the P3020, at Automate 2024 in Chicago. This model features a 30 kg payload and an 80-inch reach, enhancing automation capabilities. This development highlights a trend towards more powerful and versatile robotic solutions in the aerospace sector, potentially driving further adoption and innovation in automation technologies to meet the industry's evolving needs.

The aerospace robotics market is fragmented based on application, type, technology, solution, and region.

The painting segment will garner remarkable gains through 2032, spurred by its critical role in enhancing aircraft aesthetics and durability. Automated painting systems offer precision, efficiency, and consistency, essential for meeting stringent aerospace standards. As aerospace manufacturers increasingly prioritize high-quality finishes and reduced labor costs, robotics solutions that streamline the painting process are gaining traction. This segment's growth is driven by advancements in robotic technology that enable complex, high-speed painting applications, thus capturing an ample share of the aerospace robotics industry.

The articulated segment will see a considerable surge by 2032, owing to its versatility and advanced capabilities in handling complex tasks. Articulated robots, with their multiple degrees of freedom, are ideal for performing intricate operations such as assembly, inspection, and maintenance within the confined spaces of aircraft. Their flexibility and precision enhance operational efficiency, making them essential for modern aerospace applications. As the industry continues to embrace automation, the demand for articulated robots will grow significantly.

Europe aerospace robotics market share will experience a notable CAGR from 2024 to 2032 due to its strong aerospace manufacturing base and advanced technological infrastructure. The region's emphasis on innovation and high standards in aircraft production drives the adoption of robotics to enhance efficiency and precision. Major aerospace hubs in countries like France, Germany, and the UK are investing heavily in robotic technologies to maintain competitive edges. This growing investment and technological advancement make Europe a crucial contributor to the aerospace robotics industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Aerospace robotics industry 360º synopsis, 2021 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing demand for automation in aircraft manufacturing processes
      • 3.8.1.2 Emphasis on cost reduction and efficiency improvements.
      • 3.8.1.3 Advancements in robotic technology for complex aerospace tasks
      • 3.8.1.4 Rising focus on precision and quality control in production
      • 3.8.1.5 Addressing labor shortages and safety concerns in aerospace operations
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Concerns over cybersecurity risks in automated systems
      • 3.8.2.2 Challenges in ensuring regulatory compliance for robotic technologies
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Application, 2021 - 2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Drilling
  • 5.3 Welding
  • 5.4 Painting
  • 5.5 Inspection
  • 5.6 Others

Chapter 6 Market Estimates & Forecast, By Type, 2021 - 2032 (USD Million)

  • 6.1 Key trends
  • 6.2 Articulated
  • 6.3 Cartesian
  • 6.4 Others

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2032 (USD Million)

  • 7.1 Key trends
  • 7.2 Traditional
  • 7.3 Collaborative

Chapter 8 Market Estimates & Forecast, By Solution, 2021 - 2032 (USD Million)

  • 8.1 Key trends
  • 8.2 Hardware
  • 8.3 Software
  • 8.4 Services

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 (USD Million)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 ABB
  • 10.2 AV&R
  • 10.3 Electroimpact Inc.
  • 10.4 Fanuc Corporation
  • 10.5 JH Robotics, Inc.
  • 10.6 KUKA AG
  • 10.7 Mitsubishi Electric Corporation
  • 10.8 OC Robotics
  • 10.9 Universal Robots A/S
  • 10.10 Yaskawa Electric Corporation