封面
市场调查报告书
商品编码
1532503

电力推进系统市场 - 按推进(混合动力、全电动)、按组件(电动马达、电池、控制器/逆变器、螺旋桨/推进器)、按应用和预测,2024 - 2032 年

Electric Propulsion Systems Market - By Propulsion (Hybrid, Full-electric), By Component (Electric Motor, Battery, Controller/Inverter, Propeller/Thruster), By Application & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 250 Pages | 商品交期: 2-3个工作天内

价格
简介目录

由于电动车的普及,电动推进系统市场规模在 2024 年至 2032 年间将以超过 6% 的速度成长。 IEA 的数据显示,到 2023 年,全球将註册近 1,400 万辆新电动车,使道路上行驶的电动车总数达到 4,000 万辆。环保意识的增强和旨在减少温室气体排放的严格排放法规有利于电动车的采用。世界各国政府都在提供奖励措施、补贴和回扣,以鼓励购买电动车。此外,电池技术的显着进步带来了更长的行驶里程和更短的充电时间,使电动车对消费者更具吸引力。

马达效率方面不断进行技术创新,重点在于提高性能、可靠性和能源效率。高效能永磁马达的开发和先进材料的整合有助于降低能耗和增加功率输出。这些技术进步不仅支持电力推进系统的更广泛采用,而且在满足更永续的交通解决方案的严格监管标准方面发挥着至关重要的作用。

电力推进系统产业根据推进、组件、应用和地区进行分类。

混合动力细分市场将在 2032 年之前快速扩张,因为它们在性能和永续性之间提供了令人信服的平衡。混合动力推进系统将内燃机与电动马达结合,可提高燃油效率并减少排放。这些系统对于由于范围或功率限製而无法实现完全电气化的应用特别有利。例如,海运业大量采用船舶混合动力系统,使船舶能够在用于港口运作的电力和用于长途航行的传统燃料之间切换。

电池领域将在 2024 年至 2032 年期间出现可观的成长,因为它提供了高效运作所需的必要能量储存和电力输出。电池技术的进步,例如更高的能量密度、更快的充电时间和更长的生命週期,是推动电力推进系统采用的关键因素。尤其是锂离子电池,由于其高能量密度和可靠性已成为标准。此外,对固态电池和锂硫电池等替代电池化学物质的持续研究有望实现更高的性能和安全性。

在强有力的政府倡议和对技术创新的大力关注的推动下,到 2032 年,北美电力推进系统产业将呈现令人印象深刻的成长。美国处于领先地位,对电动车基础设施进行了大量投资,并采取激励措施来促进电动和混合动力汽车的采用。该地区主要汽车製造商和科技公司的存在进一步加速了电力推进技术的开发和部署。此外,加拿大对减少碳排放和向低碳经济转型的承诺正在推动汽车和海事领域的产品需求。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商格局
    • 零件供应商
    • 系统整合商
    • 服务提供者
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 环境法规刺激了清洁推进的需求
      • 技术进步提高效率和性能
      • 政府激励措施鼓励采用电力推动
      • 航太业寻求节能的推进替代方案
    • 产业陷阱与挑战
      • 最初的高成本阻碍了大规模采用
      • 充电站基础设施有限阻碍成长
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按推进力 2021 - 2032 年

  • 主要趋势
  • 杂交种
  • 全电动

第 6 章:市场估计与预测:按组成部分,2021 - 2032 年

  • 主要趋势
  • 电动机
  • 电池
  • 控制器/逆变器
  • 螺旋桨/推进器

第 7 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 航太
  • 海洋
  • 汽车
  • 工业机械

第 8 章:市场估计与预测:按地区,2018 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 西班牙
    • 俄罗斯
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 东南亚
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 9 章:公司简介

  • Accion Systems Inc.
  • Aerojet Rocketdyne Holdings, Inc.
  • Airbus Defence and Space
  • Apollo Fusion
  • Ariane Group
  • BAE Systems
  • Bellatrix Aerospace
  • Busek Co. Inc.
  • Daihatsu Diesel Mfg. Co. Ltd.
  • Exotrail
  • Fakel Enterprise
  • General Electric Company.
  • Honeywell Aerospace
  • Mars Space Ltd.
  • Mitsubishi Electric Corporation
  • Moog Inc.
  • OHB System AG
  • Orbital ATK (Northrop Grumman Corporation)
  • Safran Aircraft Engines
  • SITAEL SpA.
简介目录
Product Code: 9556

The Electric Propulsion Systems Market size will grow with over 6% rate during 2024-2032, driven by the increasing adoption of electric vehicles EVs. According to IEA, almost 14 million new electric cars were registered globally in 2023, bringing their total number on the roads to 40 million. The heightened environmental awareness and stringent emission regulations aimed at reducing GHG emissions are favoring EV adoption. Governments worldwide are offering incentives, subsidies, and rebates to encourage the purchase of EVs. Additionally, significant advancements in battery technology have led to longer driving ranges and shorter charging times, making EVs more appealing to consumers.

There are continuous technological innovations in electric motor efficiency, focused on enhancing the performance, reliability, and energy efficiency. The development of high-efficiency permanent magnet motors and the integration of advanced materials are contributing to reduced energy consumption and increased power output. These technological strides not only support the broader adoption of electric propulsion systems but also play a crucial role in meeting stringent regulatory standards for more sustainable transportation solutions.

The electric propulsion systems industry is classified based on propulsion, component, application and region.

The hybrid segment will expand at a fast pace through 2032, as they offer a compelling balance between performance and sustainability. Hybrid propulsion systems, which combine internal combustion engines with electric motors, provide enhanced fuel efficiency and reduced emissions. These systems are particularly advantageous for applications where full electrification may not yet be feasible due to range or power limitations. The maritime industry, for instance, has seen a surge in the adoption of hybrid systems for vessels, enabling them to switch between electric power for port operations and conventional fuel for longer voyages.

The battery segment will witness decent growth over 2024-2032, as it provides the necessary energy storage and power output required for efficient operation. Advances in battery technology, such as increased energy density, faster charging times, and extended lifecycle, are critical factors driving the adoption of electric propulsion systems. Lithium-ion batteries, in particular, have become the standard due to their high energy density and reliability. Furthermore, ongoing research into alternative battery chemistries, such as solid-state batteries and lithium-sulfur batteries, promises even greater performance and safety.

North America electric propulsion systems industry will exhibit impressive growth through 2032, driven by robust government initiatives and a strong focus on technological innovation. The United States is at the forefront, with significant investments in electric vehicle infrastructure and incentives to promote the adoption of electric and hybrid vehicles. The presence of major automotive manufacturers and technology companies in the region further accelerates the development and deployment of electric propulsion technologies. Additionally, Canada's commitment to reducing carbon emissions and transitioning to a low-carbon economy is propelling the product demand in both the automotive and maritime sectors.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Component suppliers
    • 3.2.2 System integrators
    • 3.2.3 Service providers
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Environmental regulations spur demand for cleaner propulsion
      • 3.8.1.2 Technological advancements enhance efficiency and performance
      • 3.8.1.3 Government incentives encourage electric propulsion adoption
      • 3.8.1.4 Aerospace industry seeks fuel-efficient propulsion alternatives
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Initial high cost deters mass adoption
      • 3.8.2.2 Limited infrastructure for charging stations hinders growth
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Propulsion 2021 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Hybrid
  • 5.3 Full-electric

Chapter 6 Market Estimates & Forecast, By Component, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Electric motor
  • 6.3 Battery
  • 6.4 Controller/Inverter
  • 6.5 Propeller/Thruster

Chapter 7 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Aerospace
  • 7.3 Marine
  • 7.4 Automotive
  • 7.5 Industrial machinery

Chapter 8 Market Estimates & Forecast, By Region, 2018 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Russia
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 ANZ
    • 8.4.6 Southeast Asia
    • 8.4.7 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 MEA
    • 8.6.1 UAE
    • 8.6.2 South Africa
    • 8.6.3 Saudi Arabia
    • 8.6.4 Rest of MEA

Chapter 9 Company Profiles

  • 9.1 Accion Systems Inc.
  • 9.2 Aerojet Rocketdyne Holdings, Inc.
  • 9.3 Airbus Defence and Space
  • 9.4 Apollo Fusion
  • 9.5 Ariane Group
  • 9.6 BAE Systems
  • 9.7 Bellatrix Aerospace
  • 9.8 Busek Co. Inc.
  • 9.9 Daihatsu Diesel Mfg. Co. Ltd.
  • 9.10 Exotrail
  • 9.11 Fakel Enterprise
  • 9.12 General Electric Company.
  • 9.13 Honeywell Aerospace
  • 9.14 Mars Space Ltd.
  • 9.15 Mitsubishi Electric Corporation
  • 9.16 Moog Inc.
  • 9.17 OHB System AG
  • 9.18 Orbital ATK (Northrop Grumman Corporation)
  • 9.19 Safran Aircraft Engines
  • 9.20 SITAEL SpA.