封面
市场调查报告书
商品编码
1532599

飞轮同步调相机市场 - 依冷却方式(氢冷、气冷、水冷)、启动方法(静态驱动、小马马达)、最终用户(公用事业、工业)、无功功率额定值,2024 - 2032 年

Flywheel Synchronous Condenser Market - By Cooling (Hydrogen Cooled, Air Cooled, Water Cooled), By Starting Method (Static Drive, Pony Motors), By End User (Utility, Industrial), By Reactive Power Rating, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 80 Pages | 商品交期: 2-3个工作天内

价格
简介目录

在对电网稳定性和可靠性不断增长的需求的支持下,飞轮同步调相机市场在 2024 年和 2032 年期间将实现 18.5% 的强劲复合年增长率。根据《卫报》报道,在风能和太阳能发电显着激增的推动下,再生能源在全球电力中的份额将在 2023 年首次超过 30%。这意味着需要一个能够稳定电网并提供无功功率支援的系统。飞轮同步调相机巧妙地应对了这些挑战,能够快速响应电压波动并确保稳定的供电。此外,将先进技术融入飞轮系统提高了其效率和使用寿命,使它们对电网营运商更具吸引力。

此外,世界各地的政府和公用事业公司正在加紧努力升级其电力基础设施,以满足不断增长的能源需求并促进再生能源的整合。根据 IEA 的预测,到 2024 年,全球清洁能源技术和基础设施支出预计将达到 2 兆美元。

全球飞轮同步调相机产业根据冷却、启动方法、最终用户、无功功率额定值和地区进行分类。

到 2032 年,风冷细分市场将显着成长,因为与水冷细分市场相比,其效率更高,维护要求更低。风冷系统无需复杂的水管理基础设施,使安装和操作变得更容易且更具成本效益。它们提供更低的营运成本和更高的可靠性,这在水资源稀缺的偏远或干旱地区尤其有利。此外,风冷飞轮同步冷凝器更环保,因为它们不涉及水消耗或水污染风险,符合人们对永续和环保能源解决方案的日益重视。

由于越来越注重提高电能品质和确保不间断运营,工业领域份额预计在 2024 年至 2032 年期间大幅增长。电力需求较高的产业需要稳定可靠的能源,以防止代价高昂的停机并维持营运效率。飞轮同步调相机透过提供瞬时无功功率支援和电压稳定,为这些行业提供了强大的解决方案,这对于保持工业流程的完整性至关重要。随着工业现代化以及更先进机械和自动化的采用,对先进电源管理解决方案的需求将会激增。

在监管支援、技术进步和电网现代化投资增加的推动下,北美飞轮同步调相机产业预计到 2032 年将实现强劲的复合年增长率。各国政府和监管机构正积极推动旨在提高电网可靠性和整合再生能源的措施。此外,飞轮技术的进步提高了性能和成本效益,使这些系统对电力公司和电网运营商更具吸引力。该地区对升级能源基础设施和解决电能品质问题的承诺将塑造未来几年的产业前景。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 监管环境
  • 产业影响力
    • 成长动力
    • 产业陷阱与挑战
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 战略仪錶板
  • 创新与永续发展前景

第 5 章:市场规模与预测:以冷冻方式划分,2021 - 2032 年

  • 主要趋势
  • 氢冷却
  • 风冷
  • 水冷

第 6 章:市场规模与预测:按启动方式,2021 - 2032

  • 主要趋势
  • 静态驱动
  • 小马汽车
  • 其他的

第 7 章:市场规模与预测:按最终用户划分,2021 - 2032 年

  • 主要趋势
  • 公用事业
  • 工业的

第 8 章:市场规模与预测:按无功功率等级划分,2021 - 2032 年

  • 主要趋势
  • 50 MVAr
  • 100 MVAr
  • 200 MVAr

第 9 章:市场规模与预测:按地区划分,2021 - 2032 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 义大利
    • 法国
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
  • 拉丁美洲
    • 巴西
    • 阿根廷

第 10 章:公司简介

  • ABB
  • ANDRITZ
  • Ansaldo Energia
  • Baker Hughes
  • Doosan Skoda Power
  • General Electric
  • Ingeteam
  • Mitsubishi Electric Power Products, Inc.
  • Siemens Energy
简介目录
Product Code: 9658

Flywheel Synchronous Condenser Market will record a robust CAGR of 18.5% during 2024 and 2032, backed by the escalating demand for grid stability and reliability. According to The Guardian report, renewable energy share in global electricity surpassed 30% in 2023 for the first time, driven by a notable surge in wind and solar power. This signifies the necessity for systems that can stabilize the grid and offer reactive power support. Flywheel synchronous condensers address these challenges adeptly, providing swift responses to voltage fluctuations and ensuring a steady power supply. Furthermore, the infusion of advanced technologies into flywheel systems has bolstered their efficiency and lifespan, rendering them even more appealing to grid operators.

Further, governments and utilities worldwide are intensifying efforts to upgrade their power infrastructure to meet escalating energy demands and facilitate the integration of renewables. As per IEA, global expenditure on clean energy technologies and infrastructure is projected to reach $2 trillion in 2024. Given their capacity to offer high inertia and enhance power quality, flywheel synchronous condensers are increasingly finding favor in these modernization endeavors.

The worldwide flywheel synchronous condenser industry is classified based on cooling, starting method, end user, reactive power rating, and region.

The air-cooled segment will witness notable growth through 2032, due to their enhanced efficiency and reduced maintenance requirements compared to their water-cooled counterparts. Air-cooled systems eliminate the need for complex water management infrastructure, making them easier and more cost-effective to install and operate. They offer lower operational costs and increased reliability, which is particularly advantageous in remote or arid regions where water resources are scarce. Additionally, air-cooled flywheel synchronous condensers are more environmentally friendly, as they do not involve water consumption or risk of water contamination, aligning with the growing emphasis on sustainable and eco-friendly energy solutions.

The industrial segment share is poised to grow significantly over 2024-2032, attributed to increasing focus on enhancing power quality and ensuring uninterrupted operations. Industries with high power demands require stable and reliable energy to prevent costly downtimes and maintain operational efficiency. Flywheel synchronous condensers offer a robust solution for these industries by providing instantaneous reactive power support and voltage stabilization, which are crucial for maintaining the integrity of industrial processes. With modernization and the adoption of more sophisticated machinery and automation in industries, the need for advanced power management solutions will surge.

North American flywheel synchronous condensers industry will infer a strong CAGR through 2032, driven by regulatory support, technological advancements, and increasing investments in grid modernization. Governments and regulatory bodies are actively promoting initiatives aimed at enhancing grid reliability and integrating renewable energy sources. Additionally, advancements in flywheel technology have improved performance and cost-effectiveness, making these systems more appealing for power utilities and grid operators. The region's commitment to upgrading energy infrastructure and addressing power quality issues will shape the industry outlook in the coming years.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid
      • 1.4.2.2 Public

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Strategic dashboard
  • 4.2 Innovation & sustainability landscape

Chapter 5 Market Size and Forecast, By Cooling, 2021 - 2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Hydrogen cooled
  • 5.3 Air cooled
  • 5.4 Water cooled

Chapter 6 Market Size and Forecast, By Starting Method, 2021 - 2032 (USD Million)

  • 6.1 Key trends
  • 6.2 Static drive
  • 6.3 Pony motors
  • 6.4 Others

Chapter 7 Market Size and Forecast, By End User, 2021 - 2032 (USD Million)

  • 7.1 Key trends
  • 7.2 Utility
  • 7.3 Industrial

Chapter 8 Market Size and Forecast, By Reactive Power Rating, 2021 - 2032 (USD Million)

  • 8.1 Key trends
  • 8.2 50 MVAr
  • 8.3 100 MVAr
  • 8.4 200 MVAr

Chapter 9 Market Size and Forecast, By Region, 2021 - 2032 (USD Million)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 Italy
    • 9.3.3 France
    • 9.3.4 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
  • 9.5 Middle East & Africa
    • 9.5.1 Saudi Arabia
    • 9.5.2 UAE
    • 9.5.3 South Africa
  • 9.6 Latin America
    • 9.6.1 Brazil
    • 9.6.2 Argentina

Chapter 10 Company Profiles

  • 10.1 ABB
  • 10.2 ANDRITZ
  • 10.3 Ansaldo Energia
  • 10.4 Baker Hughes
  • 10.5 Doosan Skoda Power
  • 10.6 General Electric
  • 10.7 Ingeteam
  • 10.8 Mitsubishi Electric Power Products, Inc.
  • 10.9 Siemens Energy