封面
市场调查报告书
商品编码
1535730

衝击感测器市场- 按类型(压电式、压阻式、电容器、应变计等)、按输出类型(模拟、数位)、按材料(电气石、石英、盐、磷酸镓)、按应用、按最终用途与预测, 2024 - 2032

Shock Sensor Market - By Type (Piezoelectric, Piezoresistive, Capacitors, Strain Gage, Others), By Output Type (Analog, Digital), By Material (Tourmaline, Quartz, Salts, Gallium Phosphate), By Application, By End Use & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

受汽车安全需求增加以及航空航太和国防应用精确监控需求的推动,2024 年至 2032 年间,全球震动感测器市场规模将实现 20% 的复合年增长率。在汽车领域,先进的衝击感测器透过检测和响应振动和衝击来增强安全功能。此外,航空航太和国防工业需要高精度感测器来监控结构完整性并确保运作可靠性。这些领域对安全性和精度的日益重视凸显了对先进衝击感测器的需求不断扩大,从而推动了市场的成长。

例如,2024 年2 月,SilMach 推出了微型衝击探测器,这是一种晶片大小的混合MEMS 感测器,无需电子设备或电源即可监测变形、振动和衝击等机械事件,具有长达数十年的使用寿命和广泛的应用范围。这项发展可以增强衝击感测器在各个产业(包括航空航太、汽车和消费性电子产品)的多功能性和应用范围。这项创新可能会推动采用率的提高,刺激市场成长,并为感测器性能和可靠性设定新标准。

震动感测器产业根据类型、输出类型、材料、应用、最终用途和地区进行细分。

由于压阻式装置在检测机械应力和衝击事件方面具有卓越的灵敏度和准确性,到 2032 年,压阻式装置将获得显着的立足点。压阻感测器提供高解析度测量,广泛用于各种应用,包括汽车和航空航天工业,用于监控和安全目的。即使在极端条件下,它们也能提供可靠和精确的资料,这增强了它们的吸引力。此外,压阻材料和技术的进步正在推动其广泛采用,巩固其作为市场领先领域的地位。

由于航空航太领域在确保飞机和太空船的安全和性能方面发挥关键作用,到 2032 年,航空航太领域将获得可观的收益。先进的衝击感测器对于监测结构完整性、检测振动和提供即时资料以防止故障至关重要。对高性能航空航太系统的需求不断增长,加上严格的安全标准,推动了复杂衝击感测器的采用。这一趋势将巩固航空航太领域在衝击感测器市场的主导地位,反映出其在增强航空航天技术方面的关键作用。

在快速工业化、技术创新以及基础设施和汽车产业投资增加的推动下,亚太地区震动感测器产业将在2024年至2032年实现适度的复合年增长率。该地区不断发展的航空航太和国防工业,加上消费性电子产品需求的不断增长,推动了对高性能衝击感测器的需求。此外,亚太地区强大的製造基础和不断扩大的汽车产业对市场成长做出了重大贡献。该地区充满活力的工业格局和技术进步使其成为震动感测器市场的主要贡献者。

目录

第 1 章:范围与方法

  • 市场范围和定义
  • 基本估计和计算
  • 预测参数
  • 数据来源
    • 基本的
    • 中学
      • 付费来源
      • 公共来源

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商矩阵
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 安全系统的需求不断增加
      • 汽车产业的需求不断增加
      • 航空航太和国防领域的采用不断增加
      • 感测器技术的进步
      • 工业应用和预测性维护
    • 产业陷阱与挑战
      • 成本限制和价格敏感性
      • 互通性和整合挑战
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按类型,2021 - 2032

  • 主要趋势
  • 压电式
  • 压阻式
  • 电容器
  • 应变计
  • 其他的

第 6 章:市场估计与预测:依产出类型,2021 - 2032 年

  • 主要趋势
  • 模拟
  • 数位的

第 7 章:市场估计与预测:按材料划分,2021 - 2032 年

  • 主要趋势
  • 电气石
  • 石英
  • 盐类
  • 磷酸镓

第 8 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 点击检测
  • 微驱动器保护
  • 运输和处理
  • 汽车安全系统
  • 一般防篡改
  • 其他的

第 9 章:市场估计与预测:依最终用途,2021 - 2032 年

  • 主要趋势
  • 汽车
  • 航太
  • 工业的
  • 消费性电子产品
  • 其他的

第 10 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 沙乌地阿拉伯
    • 南非
    • MEA 的其余部分

第 11 章:公司简介

  • TE Connectivity
  • PCB Piezotronics
  • Spotsee
  • Mobitron AB
  • IMI Sensors
  • SignalQuest, Inc.
  • Meggitt SA
  • Climax Technology, Co. Ltd
  • Biometrics
  • Murata Manufacturing
  • Dytran Instruments, Inc.
  • Honeywell International Inc.
  • MTS Systems Corporation
  • Metrix Instrument Co
  • Emerson Electric Co
  • Digi-key Electronics
  • IMI Sensors
  • i1 Biometrics
简介目录
Product Code: 9895

Global Shock Sensor Market size will capture a 20% CAGR between 2024 and 2032, driven by the increased demand for automotive safety and the need for precise monitoring in aerospace and defense applications. In the automotive sector, advanced shock sensors enhance safety features by detecting and responding to vibrations and impacts. Also, the aerospace and defense industries require highly accurate sensors for monitoring structural integrity and ensuring operational reliability. This growing emphasis on safety and precision in these sectors underscores the expanding need for advanced shock sensors, thus fueling market growth.

For instance, in February 2024, SilMach introduced a miniature shock detector-a chip-sized hybrid MEMS sensor that monitors mechanical events like deformations, vibrations, and shocks without electronics or a power source, offering a decades-long lifespan and wide application range. This development could enhance the versatility and application range of shock sensors across various industries, including aerospace, automotive, and consumer electronics. The innovation may drive increased adoption, stimulate market growth, and set new standards for sensor performance and reliability.

The shock sensor industry is segmented based on type, output type, material, application, end-use, and region.

The piezoresistive segment will gain a remarkable foothold by 2032 due to its superior sensitivity and accuracy in detecting mechanical stress and shock events. Piezoresistive sensors offer high-resolution measurements and are widely used in various applications, including automotive and aerospace industries, for monitoring and safety purposes. Their ability to provide reliable and precise data even under extreme conditions enhances their appeal. Moreover, advancements in piezoresistive materials and technologies are driving their widespread adoption, solidifying their position as a leading segment in the market.

The aerospace segment will amass considerable gains by 2032, attributed to its critical role in ensuring safety and performance in aircraft and spacecraft. Advanced shock sensors are essential for monitoring structural integrity, detecting vibrations, and providing real-time data to prevent failures. The increasing demand for high-performance aerospace systems, coupled with rigorous safety standards, drives the adoption of sophisticated shock sensors. This trend will bolster the aerospace segment's dominance in the shock sensor market, reflecting its crucial role in enhancing aerospace technology.

Asia Pacific shock sensor industry will achieve a moderate CAGR from 2024 to 2032, fueled by rapid industrialization, technological innovations, and increasing investments in infrastructure and automotive sectors. The region's growing aerospace and defense industries, coupled with a rising demand for consumer electronics, drive the need for high-performance shock sensors. Additionally, Asia Pacific's strong manufacturing base and expanding automotive sector contribute significantly to market growth. This region's dynamic industrial landscape and technological progress position it as a key contributor to the shock sensor market.

Table of Contents

Chapter 1 Scope & Methodology

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast parameters
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360º synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Technology & innovation landscape
  • 3.4 Patent analysis
  • 3.5 Key news and initiatives
  • 3.6 Regulatory landscape
  • 3.7 Impact forces
    • 3.7.1 Growth drivers
      • 3.7.1.1 Increasing demand for security systems
      • 3.7.1.2 Increasing demand from automotive industry
      • 3.7.1.3 Rising adoption in aerospace and defense
      • 3.7.1.4 Advancements in sensor technology
      • 3.7.1.5 Industrial applications and predictive maintenance
    • 3.7.2 Industry pitfalls & challenges
      • 3.7.2.1 Cost constraints and price sensitivity
      • 3.7.2.2 Interoperability and integration challenges
  • 3.8 Growth potential analysis
  • 3.9 Porter's analysis
    • 3.9.1 Supplier power
    • 3.9.2 Buyer power
    • 3.9.3 Threat of new entrants
    • 3.9.4 Threat of substitutes
    • 3.9.5 Industry rivalry
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Company market share analysis
  • 4.2 Competitive positioning matrix
  • 4.3 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Type, 2021 - 2032 (USD Million & Units)

  • 5.1 Key trends
  • 5.2 Piezoelectric
  • 5.3 Piezoresistive
  • 5.4 Capacitors
  • 5.5 Strain gage
  • 5.6 Others

Chapter 6 Market Estimates & Forecast, By Output type, 2021 - 2032 (USD Million & Units)

  • 6.1 Key trends
  • 6.2 Analog
  • 6.3 Digital

Chapter 7 Market Estimates & Forecast, By Material, 2021 - 2032 (USD Million & Units)

  • 7.1 Key trends
  • 7.2 Tourmaline
  • 7.3 Quartz
  • 7.4 Salts
  • 7.5 Gallium phosphate

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2032 (USD Million & Units)

  • 8.1 Key trends
  • 8.2 Tap detection
  • 8.3 Micro-drive protection
  • 8.4 Shipping and handling
  • 8.5 Automotive security systems
  • 8.6 General tamper-proofing
  • 8.7 Others

Chapter 9 Market Estimates & Forecast, By End Use, 2021 - 2032 (USD Million & Units)

  • 9.1 Key trends
  • 9.2 Automotive
  • 9.3 Aerospace
  • 9.4 Industrial
  • 9.5 Consumer electronics
  • 9.6 Others

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2032 (USD Million & Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 UK
    • 10.3.2 Germany
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 South Korea
    • 10.4.5 ANZ
    • 10.4.6 Rest of Asia Pacific
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Rest of Latin America
  • 10.6 MEA
    • 10.6.1 UAE
    • 10.6.2 Saudi Arabia
    • 10.6.3 South Africa
    • 10.6.4 Rest of MEA

Chapter 11 Company Profiles

  • 11.1 TE Connectivity
  • 11.2 PCB Piezotronics
  • 11.3 Spotsee
  • 11.4 Mobitron AB
  • 11.5 IMI Sensors
  • 11.6 SignalQuest, Inc.
  • 11.7 Meggitt SA
  • 11.8 Climax Technology, Co. Ltd
  • 11.9 Biometrics
  • 11.10 Murata Manufacturing
  • 11.11 Dytran Instruments, Inc.
  • 11.12 Honeywell International Inc.
  • 11.13 MTS Systems Corporation
  • 11.14 Metrix Instrument Co
  • 11.15 Emerson Electric Co
  • 11.16 Digi-key Electronics
  • 11.17 IMI Sensors
  • 11.18 i1 Biometrics