市场调查报告书
商品编码
1535897
临床试验中的人工智慧市场规模- 按组件(软体、服务)、按技术(机器学习(ML)、自然语言处理(NLP)、电脑视觉、情境机器人)、按应用、按最终用户和预测,2024 - 2032 年AI in Clinical Trials Market Size - By Component (Software, Service), By Technology (Machine Learning (ML), Natural Language Processing (NLP), Computer Vision, Contextual Bots), By Application, By End User & Forecast, 2024 - 2032 |
在人工智慧技术和个人化医疗不断进步的推动下,2024 年至 2032 年间,全球人工智慧临床试验市场规模将达到 14% 的复合年增长率。增强的人工智慧演算法可以实现更准确的资料分析、更快的药物开发并提高试验效率。此外,个人化医疗的兴起允许根据个别患者资料制定客製化治疗计划,优化治疗结果。随着人工智慧技术的发展和个人化方法变得更加普遍,它们的综合影响将加速临床试验,使其更有效率和有效,从而扩大市场。
例如,2023 年 11 月,阿斯特捷利康推出 Evinova,将人工智慧和数位健康解决方案整合到临床试验中,针对 CRO、试验申办者、照护团队和患者,利用该公司已在全球使用的技术。此举显示将先进技术融入临床研究、推动创新、改善试验结果以及潜在增加市场采用的趋势不断上升。随着阿斯特捷利康等主要参与者采用人工智慧,这凸显了人工智慧在改变临床试验流程和结果方面的不断扩大的作用。
临床试验产业中的人工智慧根据组件、技术、应用、最终用户和地区进行细分。
机器学习领域将在 2024 年至 2032 年期间大幅成长。机器学习演算法在处理大量临床资料、识别模式和预测试验结果方面发挥关键作用。这些功能显着减少了资料分析所需的时间并提高了决策的准确性。製药公司越来越多地利用机器学习来优化患者选择、监控试验进度并确保符合监管标准。将机器学习整合到临床试验中可以提高效率并提高试验的整体质量,支持市场扩张。
到 2032 年,药物发现领域将获得可观的效益,这归因于其对加速药物开发进程的变革性影响。人工智慧技术增强了预测模型,优化了临床试验设计,并更有效地识别潜在的候选药物,从而大大减少了时间和成本。先进的演算法分析大量数据集,以发现新的药物交互作用和生物标誌物,从而产生更有针对性的治疗方法。随着製药公司越来越多地采用人工智慧来简化发现和提高成功率,这一领域将占据相当大的市场份额。
亚太地区人工智慧临床试验市场将在2024年至2032年实现适度的复合年增长率。有利的环境。由于改善医疗保健结果和解决日益严重的慢性病负担的需要,中国、印度和日本等国家处于将人工智慧技术融入临床试验的最前沿。大量患者群体的存在和先进技术解决方案的可用性进一步支持亚太地区人工智慧在临床试验行业的扩张。
Global AI in Clinical Trials Market size will capture a 14% CAGR between 2024 and 2032, driven by continuous advancements in AI technologies and personalized medicine. Enhanced AI algorithms enable more accurate data analysis, faster drug development, and improved trial efficiency. Also, the rise of personalized medicine allows for tailored treatment plans based on individual patient data, optimizing therapeutic outcomes. As AI technologies evolve and personalized approaches become more prevalent, their combined impact will accelerate clinical trials, making them more efficient and effective, thereby expanding the market.
For instance, in November 2023, AstraZeneca introduced Evinova to integrate AI and digital health solutions into clinical trials, targeting CROs, trial sponsors, care teams, and patients, leveraging technologies already used globally by the company. This move indicates a rising trend towards integrating advanced technologies in clinical research, driving innovation, improving trial outcomes, and potentially increasing market adoption. As major players like AstraZeneca adopt AI, it underscores the expanding role of AI in transforming clinical trial processes and outcomes.
The AI in clinical trials industry is segmented based on component, technology, application, end-user, and region.
The machine learning segment will witness substantial growth throughout 2024-2032. Machine learning algorithms play a pivotal role in processing vast amounts of clinical data, identifying patterns, and predicting trial outcomes. These capabilities significantly reduce the time required for data analysis and enhance decision-making accuracy. Pharmaceutical companies are increasingly leveraging machine learning to optimize patient selection, monitor trial progress, and ensure compliance with regulatory standards. The integration of machine learning in clinical trials improves efficiency and enhances the overall quality of trials, supporting market expansion.
The drug discovery segment will amass considerable gains by 2032, attributed to its transformative impact on accelerating drug development processes. AI technologies enhance predictive modeling, optimize clinical trial designs, and identify potential drug candidates more efficiently, considerably reducing time and costs. Advanced algorithms analyze vast datasets to uncover novel drug interactions and biomarkers, leading to more targeted therapies. As pharmaceutical companies increasingly adopt AI for its ability to streamline discovery and improve success rates, this segment will hold a decent market share.
Asia Pacific AI in clinical trials market will achieve a moderate CAGR from 2024 to 2032. The region's rapidly evolving healthcare infrastructure, increasing investment in medical research, and supportive government policies create a conducive environment for AI adoption. Countries like China, India, and Japan are at the forefront of integrating AI technologies into clinical trials, driven by the need to improve healthcare outcomes and address the growing burden of chronic diseases. The presence of a large patient population and the availability of advanced technological solutions further support the expansion of the Asia Pacific AI in clinical trials industry.