封面
市场调查报告书
商品编码
1572380

基于晶闸管的静态无功补偿器市场、机会、成长动力、产业趋势分析与预测,2024-2032

Thyristor Based Static VAR Compensator Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 125 Pages | 商品交期: 2-3个工作天内

价格
简介目录

在再生能源整合程度不断提高以及为确保电网稳定性而对无功功率控制的需求不断增长的推动下,20242-2032年研究期间,全球基于晶闸管的静态无功补偿器市场的复合年增长率将超过5.2%。基于晶闸管的静态无功补偿器 (SVC) 在电力系统中发挥至关重要的作用,透过动态无功功率补偿来调节和稳定电压等级。利用晶闸管等电力电子装置,这些设备可以吸收无功功率或将无功功率注入电网。透过快速响应电压波动,SVC 可以保持电网稳定性并确保功率因数保持在所需的范围内。它们的应用涵盖工业部门、输电网路和再生能源系统,提高电能品质、减少损耗并防止电压崩溃。

基于晶闸管的静态无功补偿器市场的竞争格局以老牌企业和新兴企业的混合为特征。主要产业领导者不断创新,专注于提高其产品的效率和成本效益。随着公司寻求利用彼此的优势,协作和伙伴关係变得越来越普遍。

基于晶闸管的静态无功补偿器市场总体根据应用和地区进行分类。

由于各行业对能源效率和降低成本的不懈追求,预计到 2032 年,基于晶闸管的静态无功补偿器市场的工业部分将超过 3.5 亿美元。随着全球竞争的加剧,各行业都在寻求一切可能的优势,优化能源消耗已成为关键焦点。 SVC 技术不仅有助于实现这种最佳化,而且在最大限度地减少与不良功率因数相关的损失方面发挥关键作用。这种双重好处使 SVC 对于旨在提高利润的行业来说是一个有吸引力的主张。

到2032 年,基于晶闸管的静态无功补偿器市场的公用事业部分预计将以超过4.5% 的速度增长。的情况下。鑑于 SVC 能够适应波动的电力条件,向智慧电网技术的过渡进一步刺激了对 SVC 的需求。再生能源的大规模整合,以及输配电网路的翻新,预示着该产业的未来。

亚太地区基于晶闸管的静态无功补偿器市场预计到 2032 年将超过 4.5 亿美元。快速的工业化导致电力需求激增,为 SVC 的采用创造了肥沃的土壤。此外,随着这些国家推动再生能源整合,对确保电网稳定性的技术的需求变得至关重要。政府措施进一步推动了这一趋势,制定了旨在推广节能技术的政策和激励措施。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 监管环境
  • 产业影响力
    • 成长动力
    • 产业陷阱与挑战
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 战略展望
  • 创新与永续发展前景

第 5 章:市场规模与预测:按应用分类

  • 主要趋势
  • 公用事业
  • 铁路
  • 工业的
  • 石油和天然气
  • 其他的

第 6 章:市场规模与预测:按地区

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 法国
    • 俄罗斯
    • 英国
    • 义大利
    • 西班牙
    • 荷兰
    • 奥地利
  • 亚太地区
    • 中国
    • 日本
    • 韩国
    • 印度
    • 澳洲
    • 纽西兰
    • 马来西亚
    • 印尼
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿联酋
    • 卡达
    • 埃及
    • 南非
    • 奈及利亚
    • 科威特
    • 阿曼
  • 拉丁美洲
    • 巴西
    • 秘鲁
    • 阿根廷

第 7 章:公司简介

  • ABB
  • American Superconductor
  • Clariant Power System Limited
  • Delta Electronics, Inc.
  • Eaton
  • Elco Power
  • General Electric
  • Hitachi Energy Ltd.
  • JEMA Energy
  • Komachine Inc.
  • Merus Power
  • Mitsubishi Electric Power Products, Inc.
  • Nidec Industrial Solutions
  • NISSIN ELECTRIC Co. Ltd.
  • NR Electric Co., Ltd.
  • RXPE
  • Siemens
  • Sieyuan Electric Co., Ltd.
  • Toshiba Energy Systems and Solutions Corporation
  • Wartsila
简介目录
Product Code: 10767

The Global Thyristor Based Static VAR Compensator Market will exhibit over 5.2% CAGR over the study period 20242-2032, driven by the increasing integration of renewable energy sources and the rising demand for reactive power control to ensure grid stability. Thyristor-based static VAR compensators (SVCs) play a crucial role in power systems, regulating and stabilizing voltage levels through dynamic reactive power compensation. Utilizing power electronics like thyristors, these devices can absorb or inject reactive power into the grid. By swiftly responding to voltage fluctuations, SVCs maintain grid stability and ensure the power factor remains within desired limits. Their applications span industrial sectors, transmission networks, and renewable energy systems, enhancing power quality, reducing losses, and preventing voltage collapse.

The competitive landscape of the Thyristor Based Static VAR Compensator Market is characterized by a mix of established players and emerging entrants. Key industry leaders are continuously innovating, focusing on enhancing the efficiency and cost-effectiveness of their offerings. Collaborations and partnerships are becoming increasingly common, as companies seek to leverage each other's strengths.

The overall Thyristor Based Static VAR Compensator Market is categorized based on Application and Region.

The industrial segment of the Thyristor Based Static VAR Compensator Market is projected to exceed USD 350 million by 2032, due to industries' relentless pursuit of energy efficiency and cost reduction. As global competition intensifies, industries are seeking every possible advantage, and optimizing energy consumption has emerged as a critical focus. SVC technology not only aids in achieving this optimization but also plays a pivotal role in minimizing penalties associated with a poor power factor. This dual benefit makes SVCs an attractive proposition for industries aiming to enhance their bottom line.

The utility segment of the Thyristor Based Static VAR Compensator Market is expected to grow at a rate of over 4.5% through 2032. These systems play a pivotal role in ensuring grid stability and efficiency, especially with the increasing challenges in power management. The transition towards smart grid technologies further fuels the demand for SVCs, given their adaptability to fluctuating power conditions. The large-scale integration of renewable energy sources, alongside the refurbishment of transmission and distribution networks, bodes well for the industry's future.

Asia Pacific Thyristor Based Static VAR Compensator Market is anticipated to exceed USD 450 million by 2032. The Asia Pacific Thyristor Based Static VAR Compensator Market is witnessing robust growth, driven by a confluence of factors. Rapid industrialization has led to surging power demands, creating a fertile ground for SVC adoption. Moreover, as these nations push for renewable energy integration, the need for technologies that ensure grid stability becomes paramount. Government initiatives further bolster this trend, with policies and incentives aimed at promoting energy-efficient technologies.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Market Estimates and Forecast parameters
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid
      • 1.4.2.2 Public

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls and challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's Analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL Analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Strategic outlook
  • 4.2 Innovation and sustainability landscape

Chapter 5 Market Size and Forecast, By Application (USD Million)

  • 5.1 Key trends
  • 5.2 Utility
  • 5.3 Railway
  • 5.4 Industrial
  • 5.5 Oil and gas
  • 5.6 Others

Chapter 6 Market Size and Forecast, By Region (USD Million)

  • 6.1 Key trends
  • 6.2 North America
    • 6.2.1 U.S.
    • 6.2.2 Canada
    • 6.2.3 Mexico
  • 6.3 Europe
    • 6.3.1 Germany
    • 6.3.2 France
    • 6.3.3 Russia
    • 6.3.4 UK
    • 6.3.5 Italy
    • 6.3.6 Spain
    • 6.3.7 Netherlands
    • 6.3.8 Austria
  • 6.4 Asia Pacific
    • 6.4.1 China
    • 6.4.2 Japan
    • 6.4.3 South Korea
    • 6.4.4 India
    • 6.4.5 Australia
    • 6.4.6 New Zealand
    • 6.4.7 Malaysia
    • 6.4.8 Indonesia
  • 6.5 Middle East and Africa
    • 6.5.1 Saudi Arabia
    • 6.5.2 UAE
    • 6.5.3 Qatar
    • 6.5.4 Egypt
    • 6.5.5 South Africa
    • 6.5.6 Nigeria
    • 6.5.7 Kuwait
    • 6.5.8 Oman
  • 6.6 Latin America
    • 6.6.1 Brazil
    • 6.6.2 Peru
    • 6.6.3 Argentina

Chapter 7 Company Profiles

  • 7.1 ABB
  • 7.2 American Superconductor
  • 7.3 Clariant Power System Limited
  • 7.4 Delta Electronics, Inc.
  • 7.5 Eaton
  • 7.6 Elco Power
  • 7.7 General Electric
  • 7.8 Hitachi Energy Ltd.
  • 7.9 JEMA Energy
  • 7.10 Komachine Inc.
  • 7.11 Merus Power
  • 7.12 Mitsubishi Electric Power Products, Inc.
  • 7.13 Nidec Industrial Solutions
  • 7.14 NISSIN ELECTRIC Co. Ltd.
  • 7.15 NR Electric Co., Ltd.
  • 7.16 RXPE
  • 7.17 Siemens
  • 7.18 Sieyuan Electric Co., Ltd.
  • 7.19 Toshiba Energy Systems and Solutions Corporation
  • 7.20 Wartsila