封面
市场调查报告书
商品编码
1616234

自热重整蓝氢市场机会、成长驱动因素、产业趋势分析与预测 2024 - 2032 年

Autothermal Reforming Blue Hydrogen Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 70 Pages | 商品交期: 2-3个工作天内

价格
简介目录

全球自热重整蓝氢市场预计 2023 年价值 5,840 万美元,预计 2024 年至 2032 年复合年增长率为 16.5%。在自热重整 (ATR) 中,部分氧化和蒸气重整反应在单一反应器内同时发生,产生包含氢气、一氧化碳和二氧化碳的合成气。对能够与炼油厂和石化厂等现有工业运作无缝整合的流程的需求也不断增长。这种整合促进了清洁燃料的生产以及现有的化学工艺,从而增强了商业前景。

这种整合不仅减少了基础设施投资,还提供了营运协同效应,有可能降低氢生产商的整体成本。此外,该製程在蓝氢生产过程中捕获二氧化碳的能力使其与循环碳经济模型完美契合。在这些模型中,捕获的碳可以重复使用或储存,进一步推动产业成长。自热重整蓝氢市场按应用和地区分类。

从应用来看,市场分为炼油、化工和其他领域。到 2032 年,化学领域的成长率预计将超过 19%。随着化学公司减少碳足迹的压力越来越大,ATR 成为一个令人信服的选择。它能够捕捉氢气生产过程中高达 99% 的二氧化碳排放,帮助化学公司满足严格的环境标准。

市场范围
开始年份 2023年
预测年份 2024-2032
起始值 5840 万美元
预测值 2.447 亿美元
复合年增长率 16.5%

预计到2032 年,欧洲自热重整蓝氢市场将超过1.27 亿美元。的迅速转向。此外,欧洲努力减少对化石燃料进口(尤其是天然气)的依赖,也是产品采用的关键动力。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统
  • 监管环境
  • 产业影响力
    • 成长动力
    • 产业陷阱与挑战
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 战略仪表板
  • 创新与科技格局

第 5 章:市场规模与预测:按应用分类,2021 - 2032

  • 主要趋势
  • 石油精炼厂
  • 化学
  • 其他的

第 6 章:市场规模与预测:按地区划分,2021 - 2032 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 法国
    • 英国
    • 义大利
    • 荷兰
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿曼
    • 阿联酋
    • 科威特
    • 卡达
    • 南非
  • 拉丁美洲

第 7 章:公司简介

  • Air Liquide
  • Air Products
  • Clariant AG
  • Equinor
  • Johnson Matthey
  • KBR
  • Lummus Technology
  • Linde
  • Shell
  • Technip Energies
  • Thyssenkrupp
  • Wood
简介目录
Product Code: 11424

The Global Autothermal Reforming Blue Hydrogen Market, valued at USD 58.4 million in 2023, is projected to expand at a CAGR of 16.5% from 2024 to 2032. This process produces hydrogen by reacting hydrocarbons, predominantly natural gas, with oxygen and steam. In autothermal reforming (ATR), partial oxidation and steam reforming reactions occur simultaneously within a single reactor, yielding a synthesis gas that comprises hydrogen, carbon monoxide, and carbon dioxide. There is also a growing demand for processes that can seamlessly integrate with established industrial operations, such as refineries and petrochemical plants. This integration facilitates clean fuel production alongside existing chemical processes, enhancing business prospects.

Such integration not only curtails infrastructure investments but also offers operational synergies, potentially lowering overall costs for hydrogen producers. Furthermore, the capability of the process to capture CO2 during blue hydrogen production aligns it perfectly with circular carbon economy models. In these models, captured carbon can either be reused or stored, further propelling industry growth. The autothermal reforming blue hydrogen market is categorized by application and region.

In terms of application, the market is divided into petroleum refining, chemicals, and other sectors. The chemical segment is poised to witness a growth rate exceeding 19% till 2032. This is attributed to its efficiency in producing large hydrogen volumes, bolstering continuous production. With mounting pressure on chemical firms to curtail their carbon footprint, ATR emerges as a compelling choice. It boasts the capability to capture up to 99% of CO2 emissions during hydrogen production, aiding chemical companies in meeting stringent environmental standards.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$58.4 Million
Forecast Value$244.7 Million
CAGR16.5%

Europe autothermal reforming blue hydrogen market is projected to surpass USD 127 million by 2032. The region's swift pivot towards low-carbon technologies is fueled by stringent carbon emission regulations, notably the European Union's Green Deal and the ambition for carbon neutrality by 2050. Financial incentives, such as subsidies, grants, and carbon credits, bolster hydrogen projects in the region. Additionally, Europe's drive to lessen its dependence on fossil fuel imports, particularly natural gas, stands as a pivotal motivator for product adoption.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research Design
  • 1.2 Base estimates & calculations
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market Definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Introduction
  • 4.2 Strategic dashboard
  • 4.3 Innovation & technology landscape

Chapter 5 Market Size and Forecast, By Application, 2021 - 2032 (USD Million & MT)

  • 5.1 Key trends
  • 5.2 Petroleum refinery
  • 5.3 Chemical
  • 5.4 Others

Chapter 6 Market Size and Forecast, By Region, 2021 - 2032 (USD Million & MT)

  • 6.1 Key trends
  • 6.2 North America
    • 6.2.1 U.S.
    • 6.2.2 Canada
    • 6.2.3 Mexico
  • 6.3 Europe
    • 6.3.1 Germany
    • 6.3.2 France
    • 6.3.3 UK
    • 6.3.4 Italy
    • 6.3.5 Netherlands
    • 6.3.6 Russia
  • 6.4 Asia Pacific
    • 6.4.1 China
    • 6.4.2 India
    • 6.4.3 Japan
    • 6.4.4 Australia
  • 6.5 Middle East & Africa
    • 6.5.1 Saudi Arabia
    • 6.5.2 Oman
    • 6.5.3 UAE
    • 6.5.4 Kuwait
    • 6.5.5 Qatar
    • 6.5.6 South Africa
  • 6.6 Latin America

Chapter 7 Company Profiles

  • 7.1 Air Liquide
  • 7.2 Air Products
  • 7.3 Clariant AG
  • 7.4 Equinor
  • 7.5 Johnson Matthey
  • 7.6 KBR
  • 7.7 Lummus Technology
  • 7.8 Linde
  • 7.9 Shell
  • 7.10 Technip Energies
  • 7.11 Thyssenkrupp
  • 7.12 Wood